|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "fastNLP上手教程\n",
- "-------\n",
- "\n",
- "fastNLP提供方便的数据预处理,训练和测试模型的功能"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "DataSet & Instance\n",
- "------\n",
- "\n",
- "fastNLP用DataSet和Instance保存和处理数据。每个DataSet表示一个数据集,每个Instance表示一个数据样本。一个DataSet存有多个Instance,每个Instance可以自定义存哪些内容。\n",
- "\n",
- "有一些read_*方法,可以轻松从文件读取数据,存成DataSet。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,\n'label': 1}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import DataSet\n",
- "from fastNLP import Instance\n",
- "\n",
- "# 从csv读取数据到DataSet\n",
- "win_path = \"C:\\\\Users\\zyfeng\\Desktop\\FudanNLP\\\\fastNLP\\\\test\\\\data_for_tests\\\\tutorial_sample_dataset.csv\"\n",
- "dataset = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\\t')\n",
- "print(dataset[0])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'raw_sentence': fake data,\n'label': 0}"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# DataSet.append(Instance)加入新数据\n",
- "\n",
- "dataset.append(Instance(raw_sentence='fake data', label='0'))\n",
- "dataset[-1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# DataSet.apply(func, new_field_name)对数据预处理\n",
- "\n",
- "# 将所有数字转为小写\n",
- "dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence')\n",
- "# label转int\n",
- "dataset.apply(lambda x: int(x['label']), new_field_name='label_seq', is_target=True)\n",
- "# 使用空格分割句子\n",
- "dataset.drop(lambda x: len(x['raw_sentence'].split()) == 0)\n",
- "def split_sent(ins):\n",
- " return ins['raw_sentence'].split()\n",
- "dataset.apply(split_sent, new_field_name='words', is_input=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# DataSet.drop(func)筛除数据\n",
- "# 删除低于某个长度的词语\n",
- "dataset.drop(lambda x: len(x['words']) <= 3)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Train size: "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "54"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Test size: "
- ]
- }
- ],
- "source": [
- "# 分出测试集、训练集\n",
- "\n",
- "test_data, train_data = dataset.split(0.3)\n",
- "print(\"Train size: \", len(test_data))\n",
- "print(\"Test size: \", len(train_data))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Vocabulary\n",
- "------\n",
- "\n",
- "fastNLP中的Vocabulary轻松构建词表,将词转成数字"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': the plot is romantic comedy boilerplate from start to finish .,\n'label': 2,\n'label_seq': 2,\n'words': ['the', 'plot', 'is', 'romantic', 'comedy', 'boilerplate', 'from', 'start', 'to', 'finish', '.'],\n'word_seq': [2, 13, 9, 24, 25, 26, 15, 27, 11, 28, 3]}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Vocabulary\n",
- "\n",
- "# 构建词表, Vocabulary.add(word)\n",
- "vocab = Vocabulary(min_freq=2)\n",
- "train_data.apply(lambda x: [vocab.add(word) for word in x['words']])\n",
- "vocab.build_vocab()\n",
- "\n",
- "# index句子, Vocabulary.to_index(word)\n",
- "train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)\n",
- "test_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)\n",
- "\n",
- "\n",
- "print(test_data[0])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "batch_x has: {'words': array([list(['this', 'kind', 'of', 'hands-on', 'storytelling', 'is', 'ultimately', 'what', 'makes', 'shanghai', 'ghetto', 'move', 'beyond', 'a', 'good', ',', 'dry', ',', 'reliable', 'textbook', 'and', 'what', 'allows', 'it', 'to', 'rank', 'with', 'its', 'worthy', 'predecessors', '.']),\n",
- " list(['the', 'entire', 'movie', 'is', 'filled', 'with', 'deja', 'vu', 'moments', '.'])],\n",
- " dtype=object), 'word_seq': tensor([[ 19, 184, 6, 1, 481, 9, 206, 50, 91, 1210, 1609, 1330,\n",
- " 495, 5, 63, 4, 1269, 4, 1, 1184, 7, 50, 1050, 10,\n",
- " 8, 1611, 16, 21, 1039, 1, 2],\n",
- " [ 3, 711, 22, 9, 1282, 16, 2482, 2483, 200, 2, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
- " 0, 0, 0, 0, 0, 0, 0]])}\n",
- "batch_y has: {'label_seq': tensor([3, 2])}\n"
- ]
- }
- ],
- "source": [
- "# 假设你们需要做强化学习或者gan之类的项目,也许你们可以使用这里的dataset\n",
- "from fastNLP.core.batch import Batch\n",
- "from fastNLP.core.sampler import RandomSampler\n",
- "\n",
- "batch_iterator = Batch(dataset=train_data, batch_size=2, sampler=RandomSampler())\n",
- "for batch_x, batch_y in batch_iterator:\n",
- " print(\"batch_x has: \", batch_x)\n",
- " print(\"batch_y has: \", batch_y)\n",
- " break"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Model\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "CNNText(\n (embed): Embedding(\n (embed): Embedding(77, 50, padding_idx=0)\n (dropout): Dropout(p=0.0)\n )\n (conv_pool): ConvMaxpool(\n (convs): ModuleList(\n (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n )\n )\n (dropout): Dropout(p=0.1)\n (fc): Linear(\n (linear): Linear(in_features=12, out_features=5, bias=True)\n )\n)"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 定义一个简单的Pytorch模型\n",
- "\n",
- "from fastNLP.models import CNNText\n",
- "model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1)\n",
- "model"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Trainer & Tester\n",
- "------\n",
- "\n",
- "使用fastNLP的Trainer训练模型"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import Trainer\n",
- "from copy import deepcopy\n",
- "from fastNLP import CrossEntropyLoss\n",
- "from fastNLP import AccuracyMetric"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "training epochs started 2018-12-07 14:07:20"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "execution_count": 0,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.037037"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.296296"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.333333"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.555556"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.611111"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.481481"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.62963"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.685185"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.722222"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.777778"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- }
- ],
- "source": [
- "# 进行overfitting测试\n",
- "copy_model = deepcopy(model)\n",
- "overfit_trainer = Trainer(model=copy_model, \n",
- " train_data=test_data, \n",
- " dev_data=test_data,\n",
- " loss=CrossEntropyLoss(pred=\"output\", target=\"label_seq\"),\n",
- " metrics=AccuracyMetric(),\n",
- " n_epochs=10,\n",
- " save_path=None)\n",
- "overfit_trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "training epochs started 2018-12-07 14:08:10"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=5), HTML(value='')), layout=Layout(display='i…"
- ]
- },
- "execution_count": 0,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/5. Step:1/5. AccuracyMetric: acc=0.037037"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 2/5. Step:2/5. AccuracyMetric: acc=0.037037"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 3/5. Step:3/5. AccuracyMetric: acc=0.037037"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5. Step:4/5. AccuracyMetric: acc=0.185185"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 5/5. Step:5/5. AccuracyMetric: acc=0.240741"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Train finished!"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 实例化Trainer,传入模型和数据,进行训练\n",
- "trainer = Trainer(model=model, \n",
- " train_data=train_data, \n",
- " dev_data=test_data,\n",
- " loss=CrossEntropyLoss(pred=\"output\", target=\"label_seq\"),\n",
- " metrics=AccuracyMetric(),\n",
- " n_epochs=5)\n",
- "trainer.train()\n",
- "print('Train finished!')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[tester] \nAccuracyMetric: acc=0.240741"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Tester\n",
- "\n",
- "tester = Tester(data=test_data, model=model, metrics=AccuracyMetric())\n",
- "acc = tester.test()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# In summary\n",
- "\n",
- "## fastNLP Trainer的伪代码逻辑\n",
- "### 1. 准备DataSet,假设DataSet中共有如下的fields\n",
- " ['raw_sentence', 'word_seq1', 'word_seq2', 'raw_label','label']\n",
- " 通过\n",
- " DataSet.set_input('word_seq1', word_seq2', flag=True)将'word_seq1', 'word_seq2'设置为input\n",
- " 通过\n",
- " DataSet.set_target('label', flag=True)将'label'设置为target\n",
- "### 2. 初始化模型\n",
- " class Model(nn.Module):\n",
- " def __init__(self):\n",
- " xxx\n",
- " def forward(self, word_seq1, word_seq2):\n",
- " # (1) 这里使用的形参名必须和DataSet中的input field的名称对应。因为我们是通过形参名, 进行赋值的\n",
- " # (2) input field的数量可以多于这里的形参数量。但是不能少于。\n",
- " xxxx\n",
- " # 输出必须是一个dict\n",
- "### 3. Trainer的训练过程\n",
- " (1) 从DataSet中按照batch_size取出一个batch,调用Model.forward\n",
- " (2) 将 Model.forward的结果 与 标记为target的field 传入Losser当中。\n",
- " 由于每个人写的Model.forward的output的dict可能key并不一样,比如有人是{'pred':xxx}, {'output': xxx}; \n",
- " 另外每个人将target可能也会设置为不同的名称, 比如有人是label, 有人设置为target;\n",
- " 为了解决以上的问题,我们的loss提供映射机制\n",
- " 比如CrossEntropyLosser的需要的输入是(prediction, target)。但是forward的output是{'output': xxx}; 'label'是target\n",
- " 那么初始化losser的时候写为CrossEntropyLosser(prediction='output', target='label')即可\n",
- " (3) 对于Metric是同理的\n",
- " Metric计算也是从 forward的结果中取值 与 设置target的field中取值。 也是可以通过映射找到对应的值 \n",
- " \n",
- " \n",
- "\n",
- "## 一些问题.\n",
- "### 1. DataSet中为什么需要设置input和target\n",
- " 只有被设置为input或者target的数据才会在train的过程中被取出来\n",
- " (1.1) 我们只会在设置为input的field中寻找传递给Model.forward的参数。\n",
- " (1.2) 我们在传递值给losser或者metric的时候会使用来自: \n",
- " (a)Model.forward的output\n",
- " (b)被设置为target的field\n",
- " \n",
- "\n",
- "### 2. 我们是通过forwad中的形参名将DataSet中的field赋值给对应的参数\n",
- " (1.1) 构建模型过程中,\n",
- " 例如:\n",
- " DataSet中x,seq_lens是input,那么forward就应该是\n",
- " def forward(self, x, seq_lens):\n",
- " pass\n",
- " 我们是通过形参名称进行匹配的field的\n",
- " \n",
- "\n",
- "\n",
- "### 1. 加载数据到DataSet\n",
- "### 2. 使用apply操作对DataSet进行预处理\n",
- " (2.1) 处理过程中将某些field设置为input,某些field设置为target\n",
- "### 3. 构建模型\n",
- " (3.1) 构建模型过程中,需要注意forward函数的形参名需要和DataSet中设置为input的field名称是一致的。\n",
- " 例如:\n",
- " DataSet中x,seq_lens是input,那么forward就应该是\n",
- " def forward(self, x, seq_lens):\n",
- " pass\n",
- " 我们是通过形参名称进行匹配的field的\n",
- " (3.2) 模型的forward的output需要是dict类型的。\n",
- " 建议将输出设置为{\"pred\": xx}.\n",
- " \n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|