|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "fastNLP上手教程\n",
- "-------\n",
- "\n",
- "fastNLP提供方便的数据预处理,训练和测试模型的功能"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "DataSet & Instance\n",
- "------\n",
- "\n",
- "fastNLP用DataSet和Instance保存和处理数据。每个DataSet表示一个数据集,每个Instance表示一个数据样本。一个DataSet存有多个Instance,每个Instance可以自定义存哪些内容。\n",
- "\n",
- "有一些read_*方法,可以轻松从文件读取数据,存成DataSet。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "8529"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import DataSet\n",
- "from fastNLP import Instance\n",
- "\n",
- "# 从csv读取数据到DataSet\n",
- "dataset = DataSet.read_csv('../sentence.csv', headers=('raw_sentence', 'label'), sep='\\t')\n",
- "print(len(dataset))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,\n'label': 1}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 使用数字索引[k],获取第k个样本\n",
- "print(dataset[0])\n",
- "\n",
- "# 索引也可以是负数\n",
- "print(dataset[-3])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Instance\n",
- "Instance表示一个样本,由一个或多个field(域,属性,特征)组成,每个field有名字和值。\n",
- "\n",
- "在初始化Instance时即可定义它包含的域,使用 \"field_name=field_value\"的写法。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'raw_sentence': fake data,\n'label': 0}"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# DataSet.append(Instance)加入新数据\n",
- "dataset.append(Instance(raw_sentence='fake data', label='0'))\n",
- "dataset[-1]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## DataSet.apply方法\n",
- "数据预处理利器"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,\n'label': 1}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 将所有数字转为小写\n",
- "dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence')\n",
- "print(dataset[0])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,\n'label': 1}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# label转int\n",
- "dataset.apply(lambda x: int(x['label']), new_field_name='label')\n",
- "print(dataset[0])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,\n'label': 1,\n'words': ['a', 'series', 'of', 'escapades', 'demonstrating', 'the', 'adage', 'that', 'what', 'is', 'good', 'for', 'the', 'goose', 'is', 'also', 'good', 'for', 'the', 'gander', ',', 'some', 'of', 'which', 'occasionally', 'amuses', 'but', 'none', 'of', 'which', 'amounts', 'to', 'much', 'of', 'a', 'story', '.']}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 使用空格分割句子\n",
- "def split_sent(ins):\n",
- " return ins['raw_sentence'].split()\n",
- "dataset.apply(split_sent, new_field_name='words')\n",
- "print(dataset[0])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .,\n'label': 1,\n'words': ['a', 'series', 'of', 'escapades', 'demonstrating', 'the', 'adage', 'that', 'what', 'is', 'good', 'for', 'the', 'goose', 'is', 'also', 'good', 'for', 'the', 'gander', ',', 'some', 'of', 'which', 'occasionally', 'amuses', 'but', 'none', 'of', 'which', 'amounts', 'to', 'much', 'of', 'a', 'story', '.'],\n'seq_len': 37}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 增加长度信息\n",
- "dataset.apply(lambda x: len(x['words']), new_field_name='seq_len')\n",
- "print(dataset[0])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## DataSet.drop\n",
- "筛选数据"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "8358"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "dataset.drop(lambda x: x['seq_len'] <= 3)\n",
- "print(len(dataset))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 配置DataSet\n",
- "1. 哪些域是特征,哪些域是标签\n",
- "2. 切分训练集/验证集"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "# 设置DataSet中,哪些field要转为tensor\n",
- "\n",
- "# set target,loss或evaluate中的golden,计算loss,模型评估时使用\n",
- "dataset.set_target(\"label\")\n",
- "# set input,模型forward时使用\n",
- "dataset.set_input(\"words\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "5851"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2507"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 分出测试集、训练集\n",
- "\n",
- "test_data, train_data = dataset.split(0.3)\n",
- "print(len(test_data))\n",
- "print(len(train_data))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Vocabulary\n",
- "------\n",
- "\n",
- "fastNLP中的Vocabulary轻松构建词表,将词转成数字"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': the project 's filmmakers forgot to include anything even halfway scary as they poorly rejigger fatal attraction into a high school setting .,\n'label': 0,\n'words': [4, 423, 9, 316, 1, 8, 1, 312, 72, 1478, 885, 14, 86, 725, 1, 1913, 1431, 53, 5, 455, 736, 1, 2],\n'seq_len': 23}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Vocabulary\n",
- "\n",
- "# 构建词表, Vocabulary.add(word)\n",
- "vocab = Vocabulary(min_freq=2)\n",
- "train_data.apply(lambda x: [vocab.add(word) for word in x['words']])\n",
- "vocab.build_vocab()\n",
- "\n",
- "# index句子, Vocabulary.to_index(word)\n",
- "train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words')\n",
- "test_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words')\n",
- "\n",
- "\n",
- "print(test_data[0])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Model\n",
- "定义一个PyTorch模型"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "CNNText(\n (embed): Embedding(\n (embed): Embedding(3459, 50, padding_idx=0)\n (dropout): Dropout(p=0.0)\n )\n (conv_pool): ConvMaxpool(\n (convs): ModuleList(\n (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n )\n )\n (dropout): Dropout(p=0.1)\n (fc): Linear(\n (linear): Linear(in_features=12, out_features=5, bias=True)\n )\n)"
- ]
- },
- "execution_count": 20,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP.models import CNNText\n",
- "model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1)\n",
- "model"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "这是上述模型的forward方法。如果你不知道什么是forward方法,请参考我们的PyTorch教程。\n",
- "\n",
- "注意两点:\n",
- "1. forward参数名字叫**word_seq**,请记住。\n",
- "2. forward的返回值是一个**dict**,其中有个key的名字叫**output**。\n",
- "\n",
- "```Python\n",
- " def forward(self, word_seq):\n",
- " \"\"\"\n",
- "\n",
- " :param word_seq: torch.LongTensor, [batch_size, seq_len]\n",
- " :return output: dict of torch.LongTensor, [batch_size, num_classes]\n",
- " \"\"\"\n",
- " x = self.embed(word_seq) # [N,L] -> [N,L,C]\n",
- " x = self.conv_pool(x) # [N,L,C] -> [N,C]\n",
- " x = self.dropout(x)\n",
- " x = self.fc(x) # [N,C] -> [N, N_class]\n",
- " return {'output': x}\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "这是上述模型的predict方法,是用来直接输出该任务的预测结果,与forward目的不同。\n",
- "\n",
- "注意两点:\n",
- "1. predict参数名也叫**word_seq**。\n",
- "2. predict的返回值是也一个**dict**,其中有个key的名字叫**predict**。\n",
- "\n",
- "```\n",
- " def predict(self, word_seq):\n",
- " \"\"\"\n",
- "\n",
- " :param word_seq: torch.LongTensor, [batch_size, seq_len]\n",
- " :return predict: dict of torch.LongTensor, [batch_size, seq_len]\n",
- " \"\"\"\n",
- " output = self(word_seq)\n",
- " _, predict = output['output'].max(dim=1)\n",
- " return {'predict': predict}\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Trainer & Tester\n",
- "------\n",
- "\n",
- "使用fastNLP的Trainer训练模型"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import Trainer\n",
- "from copy import deepcopy\n",
- "from fastNLP.core.losses import CrossEntropyLoss\n",
- "from fastNLP.core.metrics import AccuracyMetric\n",
- "\n",
- "\n",
- "# 更改DataSet中对应field的名称,与模型的forward的参数名一致\n",
- "# 因为forward的参数叫word_seq, 所以要把原本叫words的field改名为word_seq\n",
- "# 这里的演示是让你了解这种**命名规则**\n",
- "train_data.rename_field('words', 'word_seq')\n",
- "test_data.rename_field('words', 'word_seq')\n",
- "\n",
- "# 顺便把label换名为label_seq\n",
- "train_data.rename_field('label', 'label_seq')\n",
- "test_data.rename_field('label', 'label_seq')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### loss\n",
- "训练模型需要提供一个损失函数\n",
- "\n",
- "下面提供了一个在分类问题中常用的交叉熵损失。注意它的**初始化参数**。\n",
- "\n",
- "pred参数对应的是模型的forward返回的dict的一个key的名字,这里是\"output\"。\n",
- "\n",
- "target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "metadata": {},
- "outputs": [],
- "source": [
- "loss = CrossEntropyLoss(pred=\"output\", target=\"label_seq\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Metric\n",
- "定义评价指标\n",
- "\n",
- "这里使用准确率。参数的“命名规则”跟上面类似。\n",
- "\n",
- "pred参数对应的是模型的predict方法返回的dict的一个key的名字,这里是\"predict\"。\n",
- "\n",
- "target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {},
- "outputs": [],
- "source": [
- "metric = AccuracyMetric(pred=\"predict\", target=\"label_seq\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "training epochs started 2018-12-07 14:11:31"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=915), HTML(value='')), layout=Layout(display=…"
- ]
- },
- "execution_count": 0,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/5. Step:183/915. AccuracyMetric: acc=0.350367"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 2/5. Step:366/915. AccuracyMetric: acc=0.409332"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 3/5. Step:549/915. AccuracyMetric: acc=0.572552"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5. Step:732/915. AccuracyMetric: acc=0.711331"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 5/5. Step:915/915. AccuracyMetric: acc=0.801572"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- }
- ],
- "source": [
- "# 实例化Trainer,传入模型和数据,进行训练\n",
- "# 先在test_data拟合\n",
- "copy_model = deepcopy(model)\n",
- "overfit_trainer = Trainer(model=copy_model, train_data=test_data, dev_data=test_data,\n",
- " loss=loss,\n",
- " metrics=metric,\n",
- " save_path=None,\n",
- " batch_size=32,\n",
- " n_epochs=5)\n",
- "overfit_trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "training epochs started 2018-12-07 14:12:21"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=395), HTML(value='')), layout=Layout(display=…"
- ]
- },
- "execution_count": 0,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/5. Step:79/395. AccuracyMetric: acc=0.250043"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 2/5. Step:158/395. AccuracyMetric: acc=0.280807"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 3/5. Step:237/395. AccuracyMetric: acc=0.280978"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 4/5. Step:316/395. AccuracyMetric: acc=0.285592"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 5/5. Step:395/395. AccuracyMetric: acc=0.278927"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r"
- ]
- }
- ],
- "source": [
- "# 用train_data训练,在test_data验证\n",
- "trainer = Trainer(model=model, train_data=train_data, dev_data=test_data,\n",
- " loss=CrossEntropyLoss(pred=\"output\", target=\"label_seq\"),\n",
- " metrics=AccuracyMetric(pred=\"predict\", target=\"label_seq\"),\n",
- " save_path=None,\n",
- " batch_size=32,\n",
- " n_epochs=5)\n",
- "trainer.train()\n",
- "print('Train finished!')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[tester] \nAccuracyMetric: acc=0.280636"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'AccuracyMetric': {'acc': 0.280636}}"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- }
- ],
- "source": [
- "# 调用Tester在test_data上评价效果\n",
- "from fastNLP import Tester\n",
- "\n",
- "tester = Tester(data=test_data, model=model, metrics=AccuracyMetric(pred=\"predict\", target=\"label_seq\"),\n",
- " batch_size=4)\n",
- "acc = tester.test()\n",
- "print(acc)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|