You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

fastnlp_tutorial_0.ipynb 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "markdown",
  5. "id": "aec0fde7",
  6. "metadata": {},
  7. "source": [
  8. "# T0. trainer 和 evaluator 的基本使用\n",
  9. "\n",
  10. "  1   trainer 和 evaluator 的基本关系\n",
  11. " \n",
  12. "    1.1   trainer 和 evaluater 的初始化\n",
  13. "\n",
  14. "    1.2   driver 的含义与使用要求\n",
  15. "\n",
  16. "    1.3   trainer 内部初始化 evaluater\n",
  17. "\n",
  18. "  2   使用 fastNLP 0.8 搭建 argmax 模型\n",
  19. "\n",
  20. "    2.1   trainer_step 和 evaluator_step\n",
  21. "\n",
  22. "    2.2   trainer 和 evaluator 的参数匹配\n",
  23. "\n",
  24. "    2.3   一个实际案例:argmax 模型\n",
  25. "\n",
  26. "  3   使用 fastNLP 0.8 训练 argmax 模型\n",
  27. " \n",
  28. "    3.1   trainer 外部初始化的 evaluator\n",
  29. "\n",
  30. "    3.2   trainer 内部初始化的 evaluator "
  31. ]
  32. },
  33. {
  34. "cell_type": "markdown",
  35. "id": "09ea669a",
  36. "metadata": {},
  37. "source": [
  38. "## 1. trainer 和 evaluator 的基本关系\n",
  39. "\n",
  40. "### 1.1 trainer 和 evaluator 的初始化\n",
  41. "\n",
  42. "在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n",
  43. "\n",
  44. "  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n",
  45. "\n",
  46. "在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n",
  47. "\n",
  48. "  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?\n",
  49. "\n",
  50. "\n",
  51. "```python\n",
  52. "trainer = Trainer(\n",
  53. " model=model, # 模型基于 torch.nn.Module\n",
  54. " train_dataloader=train_dataloader, # 加载模块基于 torch.utils.data.DataLoader \n",
  55. " optimizers=optimizer, # 优化模块基于 torch.optim.*\n",
  56. "\t...\n",
  57. "\tdriver=\"torch\", # 使用 pytorch 模块进行训练 \n",
  58. "\tdevice='cuda', # 使用 GPU:0 显卡执行训练\n",
  59. "\t...\n",
  60. ")\n",
  61. "...\n",
  62. "evaluator = Evaluator(\n",
  63. " model=model, # 模型基于 torch.nn.Module\n",
  64. " dataloaders=evaluate_dataloader, # 加载模块基于 torch.utils.data.DataLoader\n",
  65. " metrics={'acc': Accuracy()}, # 测评方法使用 fastNLP.core.metrics.Accuracy \n",
  66. " ...\n",
  67. " driver=trainer.driver, # 保持同 trainer 的 driver 一致\n",
  68. "\tdevice=None,\n",
  69. " ...\n",
  70. ")\n",
  71. "```"
  72. ]
  73. },
  74. {
  75. "cell_type": "markdown",
  76. "id": "3c11fe1a",
  77. "metadata": {},
  78. "source": [
  79. "### 1.2 driver 的含义与使用要求\n",
  80. "\n",
  81. "在`fastNLP 0.8`中,**`driver`**这一概念被用来表示**控制具体训练的各个步骤的最终执行部分**\n",
  82. "\n",
  83. "  例如神经网络前向、后向传播的具体执行、网络参数的优化和数据在设备间的迁移等\n",
  84. "\n",
  85. "在`fastNLP 0.8`中,**`Trainer`和`Evaluator`都依赖于具体的`driver`来完成整体的工作流程**\n",
  86. "\n",
  87. "  具体`driver`与`Trainer`以及`Evaluator`之间的关系请参考`fastNLP 0.8`的框架设计\n",
  88. "\n",
  89. "注:在同一脚本中,`Trainer`和`Evaluator`使用的`driver`应当保持一致\n",
  90. "\n",
  91. "  一个不能违背的原则在于:**不要将多卡的`driver`前使用单卡的`driver`**(???),这样使用可能会带来很多意想不到的错误"
  92. ]
  93. },
  94. {
  95. "cell_type": "markdown",
  96. "id": "2cac4a1a",
  97. "metadata": {},
  98. "source": [
  99. "### 1.3 Trainer 内部初始化 Evaluator\n",
  100. "\n",
  101. "在`fastNLP 0.8`中,如果在**初始化`Trainer`时**,**传入参数`evaluator_dataloaders`和`metrics`**\n",
  102. "\n",
  103. "  则在`Trainer`内部,也会初始化单独的`Evaluator`来帮助训练过程中对验证集的评测\n",
  104. "\n",
  105. "```python\n",
  106. "trainer = Trainer(\n",
  107. " model=model,\n",
  108. " train_dataloader=train_dataloader,\n",
  109. " optimizers=optimizer,\n",
  110. "\t...\n",
  111. "\tdriver=\"torch\",\n",
  112. "\tdevice='cuda',\n",
  113. "\t...\n",
  114. " evaluate_dataloaders=evaluate_dataloader, # 传入参数 evaluator_dataloaders\n",
  115. " metrics={'acc': Accuracy()}, # 传入参数 metrics\n",
  116. "\t...\n",
  117. ")\n",
  118. "```"
  119. ]
  120. },
  121. {
  122. "cell_type": "markdown",
  123. "id": "0c9c7dda",
  124. "metadata": {},
  125. "source": [
  126. "## 2. argmax 模型的搭建实例"
  127. ]
  128. },
  129. {
  130. "cell_type": "markdown",
  131. "id": "524ac200",
  132. "metadata": {},
  133. "source": [
  134. "### 2.1 trainer_step 和 evaluator_step\n",
  135. "\n",
  136. "在`fastNLP 0.8`中,使用`pytorch.nn.Module`搭建需要训练的模型,在搭建模型过程中,除了\n",
  137. "\n",
  138. "  添加`pytorch`要求的`forward`方法外,还需要添加 **`train_step`** 和 **`evaluate_step`** 这两个方法\n",
  139. "***\n",
  140. "```python\n",
  141. "class Model(torch.nn.Module):\n",
  142. " def __init__(self):\n",
  143. " super(Model, self).__init__()\n",
  144. " self.loss_fn = torch.nn.CrossEntropyLoss()\n",
  145. " pass\n",
  146. "\n",
  147. " def forward(self, x):\n",
  148. " pass\n",
  149. "\n",
  150. " def train_step(self, x, y):\n",
  151. " pred = self(x)\n",
  152. " return {\"loss\": self.loss_fn(pred, y)}\n",
  153. "\n",
  154. " def evaluate_step(self, x, y):\n",
  155. " pred = self(x)\n",
  156. " pred = torch.max(pred, dim=-1)[1]\n",
  157. " return {\"pred\": pred, \"target\": y}\n",
  158. "```\n",
  159. "***\n",
  160. "在`fastNLP 0.8`中,**函数`train_step`是`Trainer`中参数`train_fn`的默认值**\n",
  161. "\n",
  162. "  由于,在`Trainer`训练时,**`Trainer`通过参数`train_fn`对应的模型方法获得当前数据批次的损失值**\n",
  163. "\n",
  164. "  因此,在`Trainer`训练时,`Trainer`首先会寻找模型是否定义了`train_step`这一方法\n",
  165. "\n",
  166. "    如果没有找到,那么`Trainer`会默认使用模型的`forward`函数来进行训练的前向传播过程\n",
  167. "\n",
  168. "注:在`fastNLP 0.8`中,**`Trainer`要求模型通过`train_step`来返回一个字典**,**满足如`{\"loss\": loss}`的形式**\n",
  169. "\n",
  170. "  此外,这里也可以通过传入`Trainer`的参数`output_mapping`来实现高度化的定制,具体请见这一note(???)\n",
  171. "\n",
  172. "同样,在`fastNLP 0.8`中,**函数`evaluate_step`是`Evaluator`中参数`evaluate_fn`的默认值**\n",
  173. "\n",
  174. "  在`Evaluator`测试时,**`Evaluator`通过参数`evaluate_fn`对应的模型方法获得当前数据批次的评测结果**\n",
  175. "\n",
  176. "  从用户角度,模型通过`evaluate_step`方法来返回一个字典,内容与传入`Evaluator`的`metrics`一致\n",
  177. "\n",
  178. "  从模块角度,该字典的键值和`metric`中的`update`函数的签名一致,这样的机制在传参时被称为“**参数匹配**”\n",
  179. "\n",
  180. "***\n",
  181. "\n",
  182. "![fastNLP 0.8 中,Trainer 和 Evaluator 的关系图](./figures/T0-fig-trainer-and-evaluator.png)"
  183. ]
  184. },
  185. {
  186. "cell_type": "markdown",
  187. "id": "fb3272eb",
  188. "metadata": {},
  189. "source": [
  190. "### 2.2 trainer 和 evaluator 的参数匹配\n",
  191. "\n",
  192. "在`fastNLP 0.8`中,参数匹配涉及到两个方面,分别是在\n",
  193. "\n",
  194. "  一方面,**在模型的前向传播中**,**`dataloader`向`train_step`或`evaluate_step`函数传递`batch`**\n",
  195. "\n",
  196. "  另方面,**在模型的评测过程中**,**`evaluate_dataloader`向`metric`的`update`函数传递`batch`**\n",
  197. "\n",
  198. "对于前者,在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`False`时\n",
  199. "\n",
  200. "    **`fastNLP 0.8`要求`dataloader`生成的每个`batch`**,**满足如`{\"x\": x, \"y\": y}`的形式**\n",
  201. "\n",
  202. "  同时,`fastNLP 0.8`会查看模型的`train_step`和`evaluate_step`方法的参数签名,并为对应参数传入对应数值\n",
  203. "\n",
  204. "    **字典形式的定义**,**对应在`Dataset`定义的`__getitem__`方法中**,例如下方的`ArgMaxDatset`\n",
  205. "\n",
  206. "  而在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`True`时\n",
  207. "\n",
  208. "    `fastNLP 0.8`会将`batch`直接传给模型的`train_step`、`evaluate_step`或`forward`函数\n",
  209. "***\n",
  210. "```python\n",
  211. "class Dataset(torch.utils.data.Dataset):\n",
  212. " def __init__(self, x, y):\n",
  213. " self.x = x\n",
  214. " self.y = y\n",
  215. "\n",
  216. " def __len__(self):\n",
  217. " return len(self.x)\n",
  218. "\n",
  219. " def __getitem__(self, item):\n",
  220. " return {\"x\": self.x[item], \"y\": self.y[item]}\n",
  221. "```\n",
  222. "***\n",
  223. "对于后者,首先要明确,在`Trainer`和`Evaluator`中,`metrics`的计算分为`update`和`get_metric`两步\n",
  224. "\n",
  225. "    **`update`函数**,**针对一个`batch`的预测结果**,计算其累计的评价指标\n",
  226. "\n",
  227. "    **`get_metric`函数**,**统计`update`函数累计的评价指标**,来计算最终的评价结果\n",
  228. "\n",
  229. "  例如对于`Accuracy`来说,`update`函数会更新一个`batch`的正例数量`right_num`和负例数量`total_num`\n",
  230. "\n",
  231. "    而`get_metric`函数则会返回所有`batch`的评测值`right_num / total_num`\n",
  232. "\n",
  233. "  在此基础上,**`fastNLP 0.8`要求`evaluate_dataloader`生成的每个`batch`传递给对应的`metric`**\n",
  234. "\n",
  235. "    **以`{\"pred\": y_pred, \"target\": y_true}`的形式**,对应其`update`函数的函数签名"
  236. ]
  237. },
  238. {
  239. "cell_type": "markdown",
  240. "id": "f62b7bb1",
  241. "metadata": {},
  242. "source": [
  243. "### 2.3 一个实际案例:argmax 模型\n",
  244. "\n",
  245. "下文将通过训练`argmax`模型,简单介绍如何`Trainer`模块的使用方式\n",
  246. "\n",
  247. "  首先,使用`pytorch.nn.Module`定义`argmax`模型,目标是输入一组固定维度的向量,输出其中数值最大的数的索引"
  248. ]
  249. },
  250. {
  251. "cell_type": "code",
  252. "execution_count": 1,
  253. "id": "5314482b",
  254. "metadata": {
  255. "pycharm": {
  256. "is_executing": false
  257. }
  258. },
  259. "outputs": [],
  260. "source": [
  261. "import torch\n",
  262. "import torch.nn as nn\n",
  263. "\n",
  264. "class ArgMaxModel(nn.Module):\n",
  265. " def __init__(self, num_labels, feature_dimension):\n",
  266. " super(ArgMaxModel, self).__init__()\n",
  267. " self.num_labels = num_labels\n",
  268. "\n",
  269. " self.linear1 = nn.Linear(in_features=feature_dimension, out_features=10)\n",
  270. " self.ac1 = nn.ReLU()\n",
  271. " self.linear2 = nn.Linear(in_features=10, out_features=10)\n",
  272. " self.ac2 = nn.ReLU()\n",
  273. " self.output = nn.Linear(in_features=10, out_features=num_labels)\n",
  274. " self.loss_fn = nn.CrossEntropyLoss()\n",
  275. "\n",
  276. " def forward(self, x):\n",
  277. " pred = self.ac1(self.linear1(x))\n",
  278. " pred = self.ac2(self.linear2(pred))\n",
  279. " pred = self.output(pred)\n",
  280. " return pred\n",
  281. "\n",
  282. " def train_step(self, x, y):\n",
  283. " pred = self(x)\n",
  284. " return {\"loss\": self.loss_fn(pred, y)}\n",
  285. "\n",
  286. " def evaluate_step(self, x, y):\n",
  287. " pred = self(x)\n",
  288. " pred = torch.max(pred, dim=-1)[1]\n",
  289. " return {\"pred\": pred, \"target\": y}"
  290. ]
  291. },
  292. {
  293. "cell_type": "markdown",
  294. "id": "71f3fa6b",
  295. "metadata": {},
  296. "source": [
  297. "  接着,使用`torch.utils.data.Dataset`定义`ArgMaxDataset`数据集\n",
  298. "\n",
  299. "    数据集包含三个参数:维度`feature_dimension`、数据量`data_num`和随机种子`seed`\n",
  300. "\n",
  301. "    数据及初始化是,自动生成指定维度的向量,并为每个向量标注出其中最大值的索引作为预测标签"
  302. ]
  303. },
  304. {
  305. "cell_type": "code",
  306. "execution_count": 2,
  307. "id": "fe612e61",
  308. "metadata": {
  309. "pycharm": {
  310. "is_executing": false
  311. }
  312. },
  313. "outputs": [],
  314. "source": [
  315. "from torch.utils.data import Dataset\n",
  316. "\n",
  317. "class ArgMaxDataset(Dataset):\n",
  318. " def __init__(self, feature_dimension, data_num=1000, seed=0):\n",
  319. " self.num_labels = feature_dimension\n",
  320. " self.feature_dimension = feature_dimension\n",
  321. " self.data_num = data_num\n",
  322. " self.seed = seed\n",
  323. "\n",
  324. " g = torch.Generator()\n",
  325. " g.manual_seed(1000)\n",
  326. " self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()\n",
  327. " self.y = torch.max(self.x, dim=-1)[1]\n",
  328. "\n",
  329. " def __len__(self):\n",
  330. " return self.data_num\n",
  331. "\n",
  332. " def __getitem__(self, item):\n",
  333. " return {\"x\": self.x[item], \"y\": self.y[item]}"
  334. ]
  335. },
  336. {
  337. "cell_type": "markdown",
  338. "id": "2cb96332",
  339. "metadata": {},
  340. "source": [
  341. "  然后,根据`ArgMaxModel`类初始化模型实例,保持输入维度`feature_dimension`和输出标签数量`num_labels`一致\n",
  342. "\n",
  343. "    再根据`ArgMaxDataset`类初始化两个数据集实例,分别用来模型测试和模型评测,数据量各1000笔"
  344. ]
  345. },
  346. {
  347. "cell_type": "code",
  348. "execution_count": 3,
  349. "id": "76172ef8",
  350. "metadata": {
  351. "pycharm": {
  352. "is_executing": false
  353. }
  354. },
  355. "outputs": [],
  356. "source": [
  357. "model = ArgMaxModel(num_labels=10, feature_dimension=10)\n",
  358. "\n",
  359. "train_dataset = ArgMaxDataset(feature_dimension=10, data_num=1000)\n",
  360. "evaluate_dataset = ArgMaxDataset(feature_dimension=10, data_num=100)"
  361. ]
  362. },
  363. {
  364. "cell_type": "markdown",
  365. "id": "4e7d25ee",
  366. "metadata": {},
  367. "source": [
  368. "  此外,使用`torch.utils.data.DataLoader`初始化两个数据加载模块,批量大小同为8,分别用于训练和测评"
  369. ]
  370. },
  371. {
  372. "cell_type": "code",
  373. "execution_count": 4,
  374. "id": "363b5b09",
  375. "metadata": {},
  376. "outputs": [],
  377. "source": [
  378. "from torch.utils.data import DataLoader\n",
  379. "\n",
  380. "train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)\n",
  381. "evaluate_dataloader = DataLoader(evaluate_dataset, batch_size=8)"
  382. ]
  383. },
  384. {
  385. "cell_type": "markdown",
  386. "id": "c8d4443f",
  387. "metadata": {},
  388. "source": [
  389. "  最后,使用`torch.optim.SGD`初始化一个优化模块,基于随机梯度下降法"
  390. ]
  391. },
  392. {
  393. "cell_type": "code",
  394. "execution_count": 5,
  395. "id": "dc28a2d9",
  396. "metadata": {
  397. "pycharm": {
  398. "is_executing": false
  399. }
  400. },
  401. "outputs": [],
  402. "source": [
  403. "from torch.optim import SGD\n",
  404. "\n",
  405. "optimizer = SGD(model.parameters(), lr=0.001)"
  406. ]
  407. },
  408. {
  409. "cell_type": "markdown",
  410. "id": "eb8ca6cf",
  411. "metadata": {},
  412. "source": [
  413. "## 3. 使用 fastNLP 0.8 训练 argmax 模型\n",
  414. "\n",
  415. "### 3.1 trainer 外部初始化的 evaluator"
  416. ]
  417. },
  418. {
  419. "cell_type": "markdown",
  420. "id": "55145553",
  421. "metadata": {},
  422. "source": [
  423. "通过从`fastNLP`库中导入`Trainer`类,初始化`trainer`实例,对模型进行训练\n",
  424. "\n",
  425. "  需要导入预先定义好的模型`model`、对应的数据加载模块`train_dataloader`、优化模块`optimizer`\n",
  426. "\n",
  427. "  通过`progress_bar`设定进度条格式,默认为`\"auto\"`,此外还有`\"rich\"`、`\"raw\"`和`None`\n",
  428. "\n",
  429. "    但对于`\"auto\"`和`\"rich\"`格式,训练结束后进度条会不显示(???)\n",
  430. "\n",
  431. "  通过`n_epochs`设定优化迭代轮数,默认为20;全部`Trainer`的全部变量与函数可以通过`dir(trainer)`查询"
  432. ]
  433. },
  434. {
  435. "cell_type": "code",
  436. "execution_count": 6,
  437. "id": "b51b7a2d",
  438. "metadata": {
  439. "pycharm": {
  440. "is_executing": false
  441. }
  442. },
  443. "outputs": [
  444. {
  445. "data": {
  446. "text/html": [
  447. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
  448. "</pre>\n"
  449. ],
  450. "text/plain": [
  451. "\n"
  452. ]
  453. },
  454. "metadata": {},
  455. "output_type": "display_data"
  456. }
  457. ],
  458. "source": [
  459. "from fastNLP import Trainer\n",
  460. "\n",
  461. "trainer = Trainer(\n",
  462. " model=model,\n",
  463. " driver=\"torch\",\n",
  464. " device='cuda',\n",
  465. " train_dataloader=train_dataloader,\n",
  466. " optimizers=optimizer,\n",
  467. " n_epochs=10, # 设定迭代轮数 \n",
  468. " progress_bar=\"auto\" # 设定进度条格式\n",
  469. ")"
  470. ]
  471. },
  472. {
  473. "cell_type": "markdown",
  474. "id": "6e202d6e",
  475. "metadata": {},
  476. "source": [
  477. "通过使用`Trainer`类的`run`函数,进行训练\n",
  478. "\n",
  479. "&emsp; 其中,可以通过参数`num_train_batch_per_epoch`决定每个`epoch`运行多少个`batch`后停止,默认全部\n",
  480. "\n",
  481. "&emsp; 此外,可以通过`inspect.getfullargspec(trainer.run)`查询`run`函数的全部参数列表"
  482. ]
  483. },
  484. {
  485. "cell_type": "code",
  486. "execution_count": 7,
  487. "id": "ba047ead",
  488. "metadata": {
  489. "pycharm": {
  490. "is_executing": true
  491. }
  492. },
  493. "outputs": [
  494. {
  495. "data": {
  496. "application/vnd.jupyter.widget-view+json": {
  497. "model_id": "",
  498. "version_major": 2,
  499. "version_minor": 0
  500. },
  501. "text/plain": [
  502. "Output()"
  503. ]
  504. },
  505. "metadata": {},
  506. "output_type": "display_data"
  507. },
  508. {
  509. "data": {
  510. "text/html": [
  511. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
  512. ],
  513. "text/plain": []
  514. },
  515. "metadata": {},
  516. "output_type": "display_data"
  517. },
  518. {
  519. "data": {
  520. "text/html": [
  521. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
  522. "</pre>\n"
  523. ],
  524. "text/plain": [
  525. "\n"
  526. ]
  527. },
  528. "metadata": {},
  529. "output_type": "display_data"
  530. },
  531. {
  532. "data": {
  533. "text/html": [
  534. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
  535. "</pre>\n"
  536. ],
  537. "text/plain": [
  538. "\n"
  539. ]
  540. },
  541. "metadata": {},
  542. "output_type": "display_data"
  543. }
  544. ],
  545. "source": [
  546. "trainer.run()"
  547. ]
  548. },
  549. {
  550. "cell_type": "markdown",
  551. "id": "c16c5fa4",
  552. "metadata": {},
  553. "source": [
  554. "通过从`fastNLP`库中导入`Evaluator`类,初始化`evaluator`实例,对模型进行评测\n",
  555. "\n",
  556. "&emsp; 需要导入预先定义好的模型`model`、对应的数据加载模块`evaluate_dataloader`\n",
  557. "\n",
  558. "&emsp; 需要注意的是评测方法`metrics`,设定为形如`{'acc': fastNLP.core.metrics.Accuracy()}`的字典\n",
  559. "\n",
  560. "&emsp; 类似地,也可以通过`progress_bar`限定进度条格式,默认为`\"auto\"`"
  561. ]
  562. },
  563. {
  564. "cell_type": "code",
  565. "execution_count": 8,
  566. "id": "1c6b6b36",
  567. "metadata": {
  568. "pycharm": {
  569. "is_executing": true
  570. }
  571. },
  572. "outputs": [],
  573. "source": [
  574. "from fastNLP import Evaluator\n",
  575. "from fastNLP.core.metrics import Accuracy\n",
  576. "\n",
  577. "evaluator = Evaluator(\n",
  578. " model=model,\n",
  579. " driver=trainer.driver, # 需要使用 trainer 已经启动的 driver\n",
  580. " device=None,\n",
  581. " dataloaders=evaluate_dataloader,\n",
  582. " metrics={'acc': Accuracy()} # 需要严格使用此种形式的字典\n",
  583. ")"
  584. ]
  585. },
  586. {
  587. "cell_type": "markdown",
  588. "id": "8157bb9b",
  589. "metadata": {},
  590. "source": [
  591. "通过使用`Evaluator`类的`run`函数,进行训练\n",
  592. "\n",
  593. "&emsp; 其中,可以通过参数`num_eval_batch_per_dl`决定每个`evaluate_dataloader`运行多少个`batch`停止,默认全部\n",
  594. "\n",
  595. "&emsp; 最终,输出形如`{'acc#acc': acc}`的字典,中间的进度条会在运行结束后丢弃掉(???)"
  596. ]
  597. },
  598. {
  599. "cell_type": "code",
  600. "execution_count": 9,
  601. "id": "f7cb0165",
  602. "metadata": {
  603. "pycharm": {
  604. "is_executing": true
  605. }
  606. },
  607. "outputs": [
  608. {
  609. "data": {
  610. "text/html": [
  611. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
  612. ],
  613. "text/plain": []
  614. },
  615. "metadata": {},
  616. "output_type": "display_data"
  617. },
  618. {
  619. "data": {
  620. "text/html": [
  621. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
  622. ],
  623. "text/plain": []
  624. },
  625. "metadata": {},
  626. "output_type": "display_data"
  627. },
  628. {
  629. "data": {
  630. "text/html": [
  631. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
  632. "</pre>\n"
  633. ],
  634. "text/plain": [
  635. "\n"
  636. ]
  637. },
  638. "metadata": {},
  639. "output_type": "display_data"
  640. },
  641. {
  642. "data": {
  643. "text/html": [
  644. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'acc#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.43</span><span style=\"font-weight: bold\">}</span>\n",
  645. "</pre>\n"
  646. ],
  647. "text/plain": [
  648. "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.43\u001b[0m\u001b[1m}\u001b[0m\n"
  649. ]
  650. },
  651. "metadata": {},
  652. "output_type": "display_data"
  653. },
  654. {
  655. "data": {
  656. "text/plain": [
  657. "{'acc#acc': 0.43}"
  658. ]
  659. },
  660. "execution_count": 9,
  661. "metadata": {},
  662. "output_type": "execute_result"
  663. }
  664. ],
  665. "source": [
  666. "evaluator.run()"
  667. ]
  668. },
  669. {
  670. "cell_type": "markdown",
  671. "id": "dd9f68fa",
  672. "metadata": {},
  673. "source": [
  674. "### 3.2 trainer 内部初始化的 evaluator \n",
  675. "\n",
  676. "通过在初始化`trainer`实例时加入`evaluate_dataloaders`和`metrics`,可以实现在训练过程中进行评测\n",
  677. "\n",
  678. "&emsp; 通过`progress_bar`同时设定训练和评估进度条格式,训练结束后进度条会不显示(???)\n",
  679. "\n",
  680. "&emsp; **通过`evaluate_every`设定评估频率**,可以为负数、正数或者函数:\n",
  681. "\n",
  682. "&emsp; &emsp; **为负数时**,**表示每隔几个`epoch`评估一次**;**为正数时**,**则表示每隔几个`batch`评估一次**"
  683. ]
  684. },
  685. {
  686. "cell_type": "code",
  687. "execution_count": 10,
  688. "id": "183c7d19",
  689. "metadata": {
  690. "pycharm": {
  691. "is_executing": true
  692. }
  693. },
  694. "outputs": [],
  695. "source": [
  696. "trainer = Trainer(\n",
  697. " model=model,\n",
  698. " driver=trainer.driver, # 因为是在同个脚本中,这里的 driver 同样需要重用\n",
  699. " train_dataloader=train_dataloader,\n",
  700. " evaluate_dataloaders=evaluate_dataloader,\n",
  701. " metrics={'acc': Accuracy()},\n",
  702. " optimizers=optimizer,\n",
  703. " n_epochs=10, \n",
  704. " evaluate_every=-1, # 表示每个 epoch 的结束进行评估\n",
  705. ")"
  706. ]
  707. },
  708. {
  709. "cell_type": "markdown",
  710. "id": "714cc404",
  711. "metadata": {},
  712. "source": [
  713. "通过使用`Trainer`类的`run`函数,进行训练\n",
  714. "\n",
  715. "&emsp; 还可以通过参数`num_eval_sanity_batch`决定每次训练前运行多少个`evaluate_batch`进行评测,默认为2"
  716. ]
  717. },
  718. {
  719. "cell_type": "code",
  720. "execution_count": 11,
  721. "id": "2e4daa2c",
  722. "metadata": {
  723. "pycharm": {
  724. "is_executing": true
  725. }
  726. },
  727. "outputs": [
  728. {
  729. "data": {
  730. "text/html": [
  731. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
  732. ],
  733. "text/plain": []
  734. },
  735. "metadata": {},
  736. "output_type": "display_data"
  737. },
  738. {
  739. "data": {
  740. "text/html": [
  741. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
  742. ],
  743. "text/plain": []
  744. },
  745. "metadata": {},
  746. "output_type": "display_data"
  747. },
  748. {
  749. "data": {
  750. "text/html": [
  751. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
  752. "</pre>\n"
  753. ],
  754. "text/plain": [
  755. "\n"
  756. ]
  757. },
  758. "metadata": {},
  759. "output_type": "display_data"
  760. },
  761. {
  762. "data": {
  763. "text/html": [
  764. "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
  765. "</pre>\n"
  766. ],
  767. "text/plain": [
  768. "\n"
  769. ]
  770. },
  771. "metadata": {},
  772. "output_type": "display_data"
  773. }
  774. ],
  775. "source": [
  776. "trainer.run()"
  777. ]
  778. }
  779. ],
  780. "metadata": {
  781. "kernelspec": {
  782. "display_name": "Python 3 (ipykernel)",
  783. "language": "python",
  784. "name": "python3"
  785. },
  786. "language_info": {
  787. "codemirror_mode": {
  788. "name": "ipython",
  789. "version": 3
  790. },
  791. "file_extension": ".py",
  792. "mimetype": "text/x-python",
  793. "name": "python",
  794. "nbconvert_exporter": "python",
  795. "pygments_lexer": "ipython3",
  796. "version": "3.7.4"
  797. },
  798. "pycharm": {
  799. "stem_cell": {
  800. "cell_type": "raw",
  801. "metadata": {
  802. "collapsed": false
  803. },
  804. "source": []
  805. }
  806. }
  807. },
  808. "nbformat": 4,
  809. "nbformat_minor": 5
  810. }