You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

seq_labeling.py 4.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. import os
  2. import sys
  3. sys.path.append("..")
  4. import argparse
  5. from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
  6. from fastNLP.core.trainer import SeqLabelTrainer
  7. from fastNLP.loader.dataset_loader import BaseLoader
  8. from fastNLP.saver.model_saver import ModelSaver
  9. from fastNLP.loader.model_loader import ModelLoader
  10. from fastNLP.core.tester import SeqLabelTester
  11. from fastNLP.models.sequence_modeling import SeqLabeling
  12. from fastNLP.core.predictor import SeqLabelInfer
  13. from fastNLP.core.optimizer import Optimizer
  14. from fastNLP.core.dataset import SeqLabelDataSet, change_field_is_target
  15. from fastNLP.core.metrics import SeqLabelEvaluator
  16. from fastNLP.core.preprocess import save_pickle, load_pickle
  17. parser = argparse.ArgumentParser()
  18. parser.add_argument("-s", "--save", type=str, default="./seq_label/", help="path to save pickle files")
  19. parser.add_argument("-t", "--train", type=str, default="../data_for_tests/people.txt",
  20. help="path to the training data")
  21. parser.add_argument("-c", "--config", type=str, default="../data_for_tests/config", help="path to the config file")
  22. parser.add_argument("-m", "--model_name", type=str, default="seq_label_model.pkl", help="the name of the model")
  23. parser.add_argument("-i", "--infer", type=str, default="../data_for_tests/people_infer.txt",
  24. help="data used for inference")
  25. args = parser.parse_args()
  26. pickle_path = args.save
  27. model_name = args.model_name
  28. config_dir = args.config
  29. data_path = args.train
  30. data_infer_path = args.infer
  31. def infer():
  32. # Load infer configuration, the same as test
  33. test_args = ConfigSection()
  34. ConfigLoader().load_config(config_dir, {"POS_infer": test_args})
  35. # fetch dictionary size and number of labels from pickle files
  36. word_vocab = load_pickle(pickle_path, "word2id.pkl")
  37. label_vocab = load_pickle(pickle_path, "label2id.pkl")
  38. test_args["vocab_size"] = len(word_vocab)
  39. test_args["num_classes"] = len(label_vocab)
  40. print("vocabularies loaded")
  41. # Define the same model
  42. model = SeqLabeling(test_args)
  43. print("model defined")
  44. # Dump trained parameters into the model
  45. ModelLoader.load_pytorch(model, os.path.join(pickle_path, model_name))
  46. print("model loaded!")
  47. # Data Loader
  48. infer_data = SeqLabelDataSet(load_func=BaseLoader.load)
  49. infer_data.load(data_infer_path, vocabs={"word_vocab": word_vocab, "label_vocab": label_vocab}, infer=True)
  50. print("data set prepared")
  51. # Inference interface
  52. infer = SeqLabelInfer(pickle_path)
  53. results = infer.predict(model, infer_data)
  54. for res in results:
  55. print(res)
  56. print("Inference finished!")
  57. def train_and_test():
  58. # Config Loader
  59. trainer_args = ConfigSection()
  60. model_args = ConfigSection()
  61. ConfigLoader().load_config(config_dir, {
  62. "test_seq_label_trainer": trainer_args, "test_seq_label_model": model_args})
  63. data_set = SeqLabelDataSet()
  64. data_set.load(data_path)
  65. train_set, dev_set = data_set.split(0.3, shuffle=True)
  66. model_args["vocab_size"] = len(data_set.word_vocab)
  67. model_args["num_classes"] = len(data_set.label_vocab)
  68. save_pickle(data_set.word_vocab, pickle_path, "word2id.pkl")
  69. save_pickle(data_set.label_vocab, pickle_path, "label2id.pkl")
  70. trainer = SeqLabelTrainer(
  71. epochs=trainer_args["epochs"],
  72. batch_size=trainer_args["batch_size"],
  73. validate=False,
  74. use_cuda=trainer_args["use_cuda"],
  75. pickle_path=pickle_path,
  76. save_best_dev=trainer_args["save_best_dev"],
  77. model_name=model_name,
  78. optimizer=Optimizer("SGD", lr=0.01, momentum=0.9),
  79. )
  80. # Model
  81. model = SeqLabeling(model_args)
  82. # Start training
  83. trainer.train(model, train_set, dev_set)
  84. print("Training finished!")
  85. # Saver
  86. saver = ModelSaver(os.path.join(pickle_path, model_name))
  87. saver.save_pytorch(model)
  88. print("Model saved!")
  89. del model, trainer
  90. change_field_is_target(dev_set, "truth", True)
  91. # Define the same model
  92. model = SeqLabeling(model_args)
  93. # Dump trained parameters into the model
  94. ModelLoader.load_pytorch(model, os.path.join(pickle_path, model_name))
  95. print("model loaded!")
  96. # Load test configuration
  97. tester_args = ConfigSection()
  98. ConfigLoader().load_config(config_dir, {"test_seq_label_tester": tester_args})
  99. # Tester
  100. tester = SeqLabelTester(batch_size=4,
  101. use_cuda=False,
  102. pickle_path=pickle_path,
  103. model_name="seq_label_in_test.pkl",
  104. evaluator=SeqLabelEvaluator()
  105. )
  106. # Start testing with validation data
  107. tester.test(model, dev_set)
  108. print("model tested!")
  109. if __name__ == "__main__":
  110. train_and_test()
  111. infer()