|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "collapsed": true
- },
- "source": [
- "# 详细指南"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 数据读入"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
- "'label': 1 type=str}"
- ]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP.io import CSVLoader\n",
- "\n",
- "loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\\t')\n",
- "dataset = loader.load(\"./sample_data/tutorial_sample_dataset.csv\")\n",
- "dataset[0]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Instance表示一个样本,由一个或多个field(域,属性,特征)组成,每个field有名字和值。\n",
- "\n",
- "在初始化Instance时即可定义它包含的域,使用 \"field_name=field_value\"的写法。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'raw_sentence': fake data type=str,\n",
- "'label': 0 type=str}"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP import Instance\n",
- "\n",
- "dataset.append(Instance(raw_sentence='fake data', label='0'))\n",
- "dataset[-1]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 数据处理"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
- "'label': 1 type=str,\n",
- "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
- "'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n",
- "'target': 1 type=int}"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP import Vocabulary\n",
- "\n",
- "# 将所有字母转为小写, 并所有句子变成单词序列\n",
- "dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')\n",
- "dataset.apply_field(lambda x: x.split(), field_name='sentence', new_field_name='words')\n",
- "\n",
- "# 使用Vocabulary类统计单词,并将单词序列转化为数字序列\n",
- "vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')\n",
- "vocab.index_dataset(dataset, field_name='words',new_field_name='words')\n",
- "\n",
- "# 将label转为整数\n",
- "dataset.apply(lambda x: int(x['label']), new_field_name='target')\n",
- "dataset[0]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
- "'label': 1 type=str,\n",
- "'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
- "'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n",
- "'target': 1 type=int,\n",
- "'seq_len': 37 type=int}\n"
- ]
- }
- ],
- "source": [
- "# 增加长度信息\n",
- "dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')\n",
- "print(dataset[0])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 使用内置模块CNNText\n",
- "设置为符合内置模块的名称"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "CNNText(\n",
- " (embed): Embedding(\n",
- " 177, 50\n",
- " (dropout): Dropout(p=0.0)\n",
- " )\n",
- " (conv_pool): ConvMaxpool(\n",
- " (convs): ModuleList(\n",
- " (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n",
- " (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n",
- " (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n",
- " )\n",
- " )\n",
- " (dropout): Dropout(p=0.1)\n",
- " (fc): Linear(in_features=12, out_features=5, bias=True)\n",
- ")"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP.models import CNNText\n",
- "\n",
- "model_cnn = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
- "model_cnn"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "我们在使用内置模块的时候,还应该使用应该注意把 field 设定成符合内置模型输入输出的名字。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "words\n",
- "seq_len\n",
- "target\n"
- ]
- }
- ],
- "source": [
- "from fastNLP import Const\n",
- "\n",
- "dataset.rename_field('words', Const.INPUT)\n",
- "dataset.rename_field('seq_len', Const.INPUT_LEN)\n",
- "dataset.rename_field('target', Const.TARGET)\n",
- "\n",
- "dataset.set_input(Const.INPUT, Const.INPUT_LEN)\n",
- "dataset.set_target(Const.TARGET)\n",
- "\n",
- "print(Const.INPUT)\n",
- "print(Const.INPUT_LEN)\n",
- "print(Const.TARGET)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 分割训练集/验证集/测试集"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "(64, 7, 7)"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "train_dev_data, test_data = dataset.split(0.1)\n",
- "train_data, dev_data = train_dev_data.split(0.1)\n",
- "len(train_data), len(dev_data), len(test_data)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 训练(model_cnn)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### loss\n",
- "训练模型需要提供一个损失函数\n",
- "\n",
- "下面提供了一个在分类问题中常用的交叉熵损失。注意它的**初始化参数**。\n",
- "\n",
- "pred参数对应的是模型的forward返回的dict的一个key的名字,这里是\"output\"。\n",
- "\n",
- "target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import CrossEntropyLoss\n",
- "\n",
- "# loss = CrossEntropyLoss()\n",
- "# 等价于\n",
- "loss = CrossEntropyLoss(pred=Const.OUTPUT, target=Const.TARGET)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Metric\n",
- "定义评价指标\n",
- "\n",
- "这里使用准确率。参数的“命名规则”跟上面类似。\n",
- "\n",
- "pred参数对应的是模型的predict方法返回的dict的一个key的名字,这里是\"predict\"。\n",
- "\n",
- "target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import AccuracyMetric\n",
- "\n",
- "# metrics=AccuracyMetric()\n",
- "# 等价于\n",
- "metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input fields after batch(if batch size is 2):\n",
- "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n",
- "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "target fields after batch(if batch size is 2):\n",
- "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "\n",
- "training epochs started 2019-05-12-21-38-34\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714\n",
- "\n",
- "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.428571\n",
- "\n",
- "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.428571\n",
- "\n",
- "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.428571\n",
- "\n",
- "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.428571\n",
- "\n",
- "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.428571\n",
- "\n",
- "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.428571\n",
- "\n",
- "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "\n",
- "In Epoch:8/Step:16, got best dev performance:AccuracyMetric: acc=0.857143\n",
- "Reloaded the best model.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n",
- " 'best_epoch': 8,\n",
- " 'best_step': 16,\n",
- " 'seconds': 0.21}"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP import Trainer\n",
- "\n",
- "trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics)\n",
- "trainer.train()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 测试(model_cnn)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[tester] \n",
- "AccuracyMetric: acc=0.857143\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'AccuracyMetric': {'acc': 0.857143}}"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP import Tester\n",
- "\n",
- "tester = Tester(test_data, model_cnn, metrics=AccuracyMetric())\n",
- "tester.test()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 编写自己的模型\n",
- "\n",
- "完全支持 pytorch 的模型,与 pytorch 唯一不同的是返回结果是一个字典,字典中至少需要包含 \"pred\" 这个字段"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "import torch\n",
- "import torch.nn as nn\n",
- "\n",
- "class LSTMText(nn.Module):\n",
- " def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n",
- " super().__init__()\n",
- "\n",
- " self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
- " self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True, dropout=dropout)\n",
- " self.fc = nn.Linear(hidden_dim * 2, output_dim)\n",
- " self.dropout = nn.Dropout(dropout)\n",
- "\n",
- " def forward(self, words):\n",
- " # (input) words : (batch_size, seq_len)\n",
- " words = words.permute(1,0)\n",
- " # words : (seq_len, batch_size)\n",
- "\n",
- " embedded = self.dropout(self.embedding(words))\n",
- " # embedded : (seq_len, batch_size, embedding_dim)\n",
- " output, (hidden, cell) = self.lstm(embedded)\n",
- " # output: (seq_len, batch_size, hidden_dim * 2)\n",
- " # hidden: (num_layers * 2, batch_size, hidden_dim)\n",
- " # cell: (num_layers * 2, batch_size, hidden_dim)\n",
- "\n",
- " hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)\n",
- " hidden = self.dropout(hidden)\n",
- " # hidden: (batch_size, hidden_dim * 2)\n",
- "\n",
- " pred = self.fc(hidden.squeeze(0))\n",
- " # result: (batch_size, output_dim)\n",
- " return {\"pred\":pred}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input fields after batch(if batch size is 2):\n",
- "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n",
- "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "target fields after batch(if batch size is 2):\n",
- "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "\n",
- "training epochs started 2019-05-12-21-38-36\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.714286\n",
- "\n",
- "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "\n",
- "In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.857143\n",
- "Reloaded the best model.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n",
- " 'best_epoch': 6,\n",
- " 'best_step': 12,\n",
- " 'seconds': 2.15}"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_lstm = LSTMText(len(vocab),50,5)\n",
- "trainer = Trainer(model=model_lstm, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics)\n",
- "trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[tester] \n",
- "AccuracyMetric: acc=0.857143\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'AccuracyMetric': {'acc': 0.857143}}"
- ]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "tester = Tester(test_data, model_lstm, metrics=AccuracyMetric())\n",
- "tester.test()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 使用 Batch编写自己的训练过程"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 0 Avg Loss: 3.11 18ms\n",
- "Epoch 1 Avg Loss: 2.88 30ms\n",
- "Epoch 2 Avg Loss: 2.69 42ms\n",
- "Epoch 3 Avg Loss: 2.47 54ms\n",
- "Epoch 4 Avg Loss: 2.38 67ms\n",
- "Epoch 5 Avg Loss: 2.10 78ms\n",
- "Epoch 6 Avg Loss: 2.06 91ms\n",
- "Epoch 7 Avg Loss: 1.92 103ms\n",
- "Epoch 8 Avg Loss: 1.91 114ms\n",
- "Epoch 9 Avg Loss: 1.76 126ms\n",
- "[tester] \n",
- "AccuracyMetric: acc=0.571429\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'AccuracyMetric': {'acc': 0.571429}}"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP import BucketSampler\n",
- "from fastNLP import Batch\n",
- "import torch\n",
- "import time\n",
- "\n",
- "model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
- "\n",
- "def train(epoch, data):\n",
- " optim = torch.optim.Adam(model.parameters(), lr=0.001)\n",
- " lossfunc = torch.nn.CrossEntropyLoss()\n",
- " batch_size = 32\n",
- "\n",
- " # 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。\n",
- " # 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)\n",
- " train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')\n",
- " train_batch = Batch(batch_size=batch_size, dataset=data, sampler=train_sampler)\n",
- " \n",
- " start_time = time.time()\n",
- " for i in range(epoch):\n",
- " loss_list = []\n",
- " for batch_x, batch_y in train_batch:\n",
- " optim.zero_grad()\n",
- " output = model(batch_x['words'])\n",
- " loss = lossfunc(output['pred'], batch_y['target'])\n",
- " loss.backward()\n",
- " optim.step()\n",
- " loss_list.append(loss.item())\n",
- " print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=\" \")\n",
- " print('{:d}ms'.format(round((time.time()-start_time)*1000)))\n",
- " loss_list.clear()\n",
- " \n",
- "train(10, train_data)\n",
- "tester = Tester(test_data, model, metrics=AccuracyMetric())\n",
- "tester.test()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 使用 Callback 实现自己想要的效果"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input fields after batch(if batch size is 2):\n",
- "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n",
- "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "target fields after batch(if batch size is 2):\n",
- "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "\n",
- "training epochs started 2019-05-12-21-38-40\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714\n",
- "\n",
- "Sum Time: 51ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.285714\n",
- "\n",
- "Sum Time: 69ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.285714\n",
- "\n",
- "Sum Time: 91ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Sum Time: 107ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Sum Time: 125ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Sum Time: 142ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Sum Time: 158ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.571429\n",
- "\n",
- "Sum Time: 176ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.714286\n",
- "\n",
- "Sum Time: 193ms\n",
- "\n",
- "\n",
- "Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n",
- "\n",
- "Sum Time: 212ms\n",
- "\n",
- "\n",
- "\n",
- "In Epoch:10/Step:20, got best dev performance:AccuracyMetric: acc=0.857143\n",
- "Reloaded the best model.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n",
- " 'best_epoch': 10,\n",
- " 'best_step': 20,\n",
- " 'seconds': 0.2}"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP import Callback\n",
- "\n",
- "start_time = time.time()\n",
- "\n",
- "class MyCallback(Callback):\n",
- " def on_epoch_end(self):\n",
- " print('Sum Time: {:d}ms\\n\\n'.format(round((time.time()-start_time)*1000)))\n",
- " \n",
- "\n",
- "model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
- "trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,\n",
- " loss=CrossEntropyLoss(), metrics=AccuracyMetric(), callbacks=[MyCallback()])\n",
- "trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 1
- }
|