You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tutorial_5_datasetiter.rst 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. ==============================================================================
  2. DataSetIter 教程 ———— 以文本分类为例
  3. ==============================================================================
  4. 我们使用和 :doc:`/user/quickstart` 中一样的任务来进行详细的介绍。给出一段评价性文字,预测其情感倾向是积极(label=1)、消极(label=0)还是中性(label=2),使用:class:`~fastNLP.DataSetIter` 类来编写自己的训练过程。自己编写训练过程之前的内容与 :doc:`/tutorials/tutorial_4_loss_optimizer` 中的完全一样,如已经阅读过可以跳过。
  5. --------------
  6. 数据处理
  7. --------------
  8. 数据读入
  9. 我们可以使用 fastNLP :mod:`fastNLP.io` 模块中的 :class:`~fastNLP.io.SSTLoader` 类,轻松地读取SST数据集(数据来源:https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip)。
  10. 这里的 dataset 是 fastNLP 中 :class:`~fastNLP.DataSet` 类的对象。
  11. .. code-block:: python
  12. from fastNLP.io import SSTLoader
  13. loader = SSTLoader()
  14. #这里的all.txt是下载好数据后train.txt、dev.txt、test.txt的组合
  15. dataset = loader.load("./trainDevTestTrees_PTB/trees/all.txt")
  16. print(dataset[0])
  17. 输出数据如下::
  18. {'words': ['It', "'s", 'a', 'lovely', 'film', 'with', 'lovely', 'performances', 'by', 'Buy', 'and', 'Accorsi', '.'] type=list,
  19. 'target': positive type=str}
  20. 除了读取数据外,fastNLP 还提供了读取其它文件类型的 Loader 类、读取 Embedding的 Loader 等。详见 :doc:`/fastNLP.io` 。
  21. 数据处理
  22. 我们使用 :class:`~fastNLP.DataSet` 类的 :meth:`~fastNLP.DataSet.apply` 方法将 ``target`` :mod:`~fastNLP.core.field` 转化为整数。
  23. .. code-block:: python
  24. def label_to_int(x):
  25. if x['target']=="positive":
  26. return 1
  27. elif x['target']=="negative":
  28. return 0
  29. else:
  30. return 2
  31. # 将label转为整数
  32. dataset.apply(lambda x: label_to_int(x), new_field_name='target')
  33. ``words`` 和 ``target`` 已经足够用于 :class:`~fastNLP.models.CNNText` 的训练了,但我们从其文档
  34. :class:`~fastNLP.models.CNNText` 中看到,在 :meth:`~fastNLP.models.CNNText.forward` 的时候,还可以传入可选参数 ``seq_len`` 。
  35. 所以,我们再使用 :meth:`~fastNLP.DataSet.apply_field` 方法增加一个名为 ``seq_len`` 的 :mod:`~fastNLP.core.field` 。
  36. .. code-block:: python
  37. # 增加长度信息
  38. dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')
  39. 观察可知: :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 类似,
  40. 但所传入的 `lambda` 函数是针对一个 :class:`~fastNLP.Instance` 中的一个 :mod:`~fastNLP.core.field` 的;
  41. 而 :meth:`~fastNLP.DataSet.apply` 所传入的 `lambda` 函数是针对整个 :class:`~fastNLP.Instance` 的。
  42. .. note::
  43. `lambda` 函数即匿名函数,是 Python 的重要特性。 ``lambda x: len(x)`` 和下面的这个函数的作用相同::
  44. def func_lambda(x):
  45. return len(x)
  46. 你也可以编写复杂的函数做为 :meth:`~fastNLP.DataSet.apply_field` 与 :meth:`~fastNLP.DataSet.apply` 的参数
  47. Vocabulary 的使用
  48. 我们再用 :class:`~fastNLP.Vocabulary` 类来统计数据中出现的单词,并使用 :meth:`~fastNLP.Vocabulary.index_dataset`
  49. 将单词序列转化为训练可用的数字序列。
  50. .. code-block:: python
  51. from fastNLP import Vocabulary
  52. # 使用Vocabulary类统计单词,并将单词序列转化为数字序列
  53. vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')
  54. vocab.index_dataset(dataset, field_name='words',new_field_name='words')
  55. print(dataset[0])
  56. 输出数据如下::
  57. {'words': [27, 9, 6, 913, 16, 18, 913, 124, 31, 5715, 5, 1, 2] type=list,
  58. 'target': 1 type=int,
  59. 'seq_len': 13 type=int}
  60. ---------------------
  61. 使用内置模型训练
  62. ---------------------
  63. 内置模型的输入输出命名
  64. fastNLP内置了一些完整的神经网络模型,详见 :doc:`/fastNLP.models` , 我们使用其中的 :class:`~fastNLP.models.CNNText` 模型进行训练。
  65. 为了使用内置的 :class:`~fastNLP.models.CNNText`,我们必须修改 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 的名称。
  66. 在这个例子中模型输入 (forward方法的参数) 为 ``words`` 和 ``seq_len`` ; 预测输出为 ``pred`` ;标准答案为 ``target`` 。
  67. 具体的命名规范可以参考 :doc:`/fastNLP.core.const` 。
  68. 如果不想查看文档,您也可以使用 :class:`~fastNLP.Const` 类进行命名。下面的代码展示了给 :class:`~fastNLP.DataSet` 中
  69. :mod:`~fastNLP.core.field` 改名的 :meth:`~fastNLP.DataSet.rename_field` 方法,以及 :class:`~fastNLP.Const` 类的使用方法。
  70. .. code-block:: python
  71. from fastNLP import Const
  72. dataset.rename_field('words', Const.INPUT)
  73. dataset.rename_field('seq_len', Const.INPUT_LEN)
  74. dataset.rename_field('target', Const.TARGET)
  75. print(Const.INPUT)
  76. print(Const.INPUT_LEN)
  77. print(Const.TARGET)
  78. print(Const.OUTPUT)
  79. 输出结果为::
  80. words
  81. seq_len
  82. target
  83. pred
  84. 在给 :class:`~fastNLP.DataSet` 中 :mod:`~fastNLP.core.field` 改名后,我们还需要设置训练所需的输入和目标,这里使用的是
  85. :meth:`~fastNLP.DataSet.set_input` 和 :meth:`~fastNLP.DataSet.set_target` 两个函数。
  86. .. code-block:: python
  87. #使用dataset的 set_input 和 set_target函数,告诉模型dataset中那些数据是输入,那些数据是标签(目标输出)
  88. dataset.set_input(Const.INPUT, Const.INPUT_LEN)
  89. dataset.set_target(Const.TARGET)
  90. 数据集分割
  91. 除了修改 :mod:`~fastNLP.core.field` 之外,我们还可以对 :class:`~fastNLP.DataSet` 进行分割,以供训练、开发和测试使用。
  92. 下面这段代码展示了 :meth:`~fastNLP.DataSet.split` 的使用方法
  93. .. code-block:: python
  94. train_dev_data, test_data = dataset.split(0.1)
  95. train_data, dev_data = train_dev_data.split(0.1)
  96. print(len(train_data), len(dev_data), len(test_data))
  97. 输出结果为::
  98. 9603 1067 1185
  99. 评价指标
  100. 训练模型需要提供一个评价指标。这里使用准确率做为评价指标。参数的 `命名规则` 跟上面类似。
  101. ``pred`` 参数对应的是模型的 forward 方法返回的 dict 中的一个 key 的名字。
  102. ``target`` 参数对应的是 :class:`~fastNLP.DataSet` 中作为标签的 :mod:`~fastNLP.core.field` 的名字。
  103. .. code-block:: python
  104. from fastNLP import AccuracyMetric
  105. # metrics=AccuracyMetric() 在本例中与下面这行代码等价
  106. metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)
  107. --------------------------
  108. 自己编写训练过程
  109. --------------------------
  110. 如果你想用类似 PyTorch 的使用方法,自己编写训练过程,你可以参考下面这段代码。
  111. 其中使用了 fastNLP 提供的 :class:`~fastNLP.DataSetIter` 来获得小批量训练的小批量数据,
  112. 使用 :class:`~fastNLP.BucketSampler` 做为 :class:`~fastNLP.DataSetIter` 的参数来选择采样的方式。
  113. DataSetIter
  114. fastNLP定义的 :class:`~fastNLP.DataSetIter` 类,用于定义一个batch,并实现batch的多种功能,在初始化时传入的参数有:
  115. * dataset: :class:`~fastNLP.DataSet` 对象, 数据集
  116. * batch_size: 取出的batch大小
  117. * sampler: 规定使用的 :class:`~fastNLP.Sampler` 若为 None, 使用 :class:`~fastNLP.RandomSampler` (Default: None)
  118. * as_numpy: 若为 True, 输出batch为 `numpy.array`. 否则为 `torch.Tensor` (Default: False)
  119. * prefetch: 若为 True使用多进程预先取出下一batch. (Default: False)
  120. sampler
  121. fastNLP 实现的采样器有:
  122. * :class:`~fastNLP.BucketSampler` 可以随机地取出长度相似的元素 【初始化参数: num_buckets:bucket的数量; batch_size:batch大小; seq_len_field_name:dataset中对应序列长度的 :mod:`~fastNLP.core.field` 的名字】
  123. * SequentialSampler: 顺序取出元素的采样器【无初始化参数】
  124. * RandomSampler:随机化取元素的采样器【无初始化参数】
  125. 以下代码使用BucketSampler作为 :class:`~fastNLP.DataSetIter` 初始化的输入,运用 :class:`~fastNLP.DataSetIter` 自己写训练程序
  126. .. code-block:: python
  127. from fastNLP import BucketSampler
  128. from fastNLP import DataSetIter
  129. from fastNLP.models import CNNText
  130. from fastNLP import Tester
  131. import torch
  132. import time
  133. embed_dim = 100
  134. model = CNNText((len(vocab),embed_dim), num_classes=3, padding=2, dropout=0.1)
  135. def train(epoch, data, devdata):
  136. optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
  137. lossfunc = torch.nn.CrossEntropyLoss()
  138. batch_size = 32
  139. # 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。
  140. # 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)
  141. train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')
  142. train_batch = DataSetIter(batch_size=batch_size, dataset=data, sampler=train_sampler)
  143. start_time = time.time()
  144. print("-"*5+"start training"+"-"*5)
  145. for i in range(epoch):
  146. loss_list = []
  147. for batch_x, batch_y in train_batch:
  148. optimizer.zero_grad()
  149. output = model(batch_x['words'])
  150. loss = lossfunc(output['pred'], batch_y['target'])
  151. loss.backward()
  152. optimizer.step()
  153. loss_list.append(loss.item())
  154. #这里verbose如果为0,在调用Tester对象的test()函数时不输出任何信息,返回评估信息; 如果为1,打印出验证结果,返回评估信息
  155. #在调用过Tester对象的test()函数后,调用其_format_eval_results(res)函数,结构化输出验证结果
  156. tester_tmp = Tester(devdata, model, metrics=AccuracyMetric(), verbose=0)
  157. res=tester_tmp.test()
  158. print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=" ")
  159. print(tester._format_eval_results(res),end=" ")
  160. print('{:d}ms'.format(round((time.time()-start_time)*1000)))
  161. loss_list.clear()
  162. train(10, train_data, dev_data)
  163. #使用tester进行快速测试
  164. tester = Tester(test_data, model, metrics=AccuracyMetric())
  165. tester.test()
  166. 这段代码的输出如下::
  167. -----start training-----
  168. Epoch 0 Avg Loss: 1.09 AccuracyMetric: acc=0.480787 58989ms
  169. Epoch 1 Avg Loss: 1.00 AccuracyMetric: acc=0.500469 118348ms
  170. Epoch 2 Avg Loss: 0.93 AccuracyMetric: acc=0.536082 176220ms
  171. Epoch 3 Avg Loss: 0.87 AccuracyMetric: acc=0.556701 236032ms
  172. Epoch 4 Avg Loss: 0.78 AccuracyMetric: acc=0.562324 294351ms
  173. Epoch 5 Avg Loss: 0.69 AccuracyMetric: acc=0.58388 353673ms
  174. Epoch 6 Avg Loss: 0.60 AccuracyMetric: acc=0.574508 412106ms
  175. Epoch 7 Avg Loss: 0.51 AccuracyMetric: acc=0.589503 471097ms
  176. Epoch 8 Avg Loss: 0.44 AccuracyMetric: acc=0.581068 529174ms
  177. Epoch 9 Avg Loss: 0.39 AccuracyMetric: acc=0.572634 586216ms
  178. [tester]
  179. AccuracyMetric: acc=0.527426