|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# T2. dataloader 和 tokenizer 的基本使用\n",
- "\n",
- "  1   fastNLP 中的 dataloader\n",
- "\n",
- "    1.1   databundle 的结构与使用\n",
- "\n",
- "    1.2   dataloader 的结构与使用\n",
- "\n",
- "  2   fastNLP 中的 tokenizer\n",
- " \n",
- "    2.1   传统 GloVe 词嵌入的加载\n",
- " \n",
- "    2.2   PreTrainedTokenizer 的概念\n",
- "\n",
- "    2.3   BertTokenizer 的基本使用\n",
- "\n",
- "  3   实例:NG20 数据集的完整加载过程\n",
- " \n",
- "    3.1   \n",
- "\n",
- "    3.2   "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 1. fastNLP 中的 dataloader\n",
- "\n",
- "### 1.1 databundle 的结构与使用\n",
- "\n",
- "在`fastNLP 0.8`中,在常用的数据加载模块`DataLoader`和数据集`DataSet`模块之间,还存在\n",
- "\n",
- "  一个中间模块,即 **数据包`DataBundle`模块**,可以从`fastNLP.io`路径中导入该模块\n",
- "\n",
- "在`fastNLP 0.8`中,**一个`databundle`数据包包含若干`dataset`数据集和`vocabulary`词汇表**\n",
- "\n",
- "  分别存储在`datasets`和`vocabs`两个变量中,所以了解`databundle`数据包之前\n",
- "\n",
- "  需要首先**复习`dataset`数据集和`vocabulary`词汇表**,**下面的一串代码**,**你知道其大概含义吗?**\n",
- "\n",
- "必要提示:`NG20`,全称[`News Group 20`](http://qwone.com/~jason/20Newsgroups/),是一个新闻文本分类数据集,包含20个大类以及若干小类\n",
- "\n",
- "  数据集包含训练集`'ng20_train.csv'`和测试集`'ng20_test.csv'`两部分,每条数据\n",
- "\n",
- "  包括`'label'`标签和`'text'`文本两个条目,通过`sample(frac=1)[:10]`随机采样并读取前十条"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/10 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Processing: 0%| | 0/10 [00:00<?, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "+-------+------------------------------------------+\n",
- "| label | text |\n",
- "+-------+------------------------------------------+\n",
- "| talk | ['mwilson', 'ncratl', 'atlantaga', 'n... |\n",
- "| talk | ['ch981', 'cleveland', 'freenet', 'ed... |\n",
- "| rec | ['mbeaving', 'bnr', 'ca', '\\\\(', 'bea... |\n",
- "| soc | ['jayne', 'mmalt', 'guild', 'org', '\\... |\n",
- "| talk | ['jrutledg', 'cs', 'ulowell', 'edu', ... |\n",
- "| talk | ['cramer', 'optilink', 'com', '\\\\(', ... |\n",
- "| comp | ['triton', 'unm', 'edu', '\\\\(', 'larr... |\n",
- "| rec | ['ingres', 'com', '\\\\(', 'bruce', '\\\\... |\n",
- "| comp | ['ldo', 'waikato', 'ac', 'nz', '\\\\(',... |\n",
- "| misc | ['rebecca', 'rpi', 'edu', '\\\\(', 'ezr... |\n",
- "+-------+------------------------------------------+\n",
- "{'<pad>': 0, '<unk>': 1, 'rec': 2, 'talk': 3, 'comp': 4, 'soc': 5, 'misc': 6, 'sci': 7}\n"
- ]
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "from fastNLP import DataSet\n",
- "from fastNLP import Vocabulary\n",
- "from fastNLP.io import DataBundle\n",
- "\n",
- "datasets = {}\n",
- "datasets['train'] = DataSet.from_pandas(pd.read_csv('./data/ng20_train.csv').sample(frac=1)[:10])\n",
- "datasets['train'].apply_more(lambda ins:{'label': ins['label'].lower().split('.')[0], \n",
- " 'text': ins['text'].lower().split()},\n",
- " progress_bar='tqdm')\n",
- "datasets['test'] = DataSet.from_pandas(pd.read_csv('./data/ng20_test.csv').sample(frac=1)[:10])\n",
- "datasets['test'].apply_more(lambda ins:{'label': ins['label'].lower().split('.')[0], \n",
- " 'text': ins['text'].lower().split()},\n",
- " progress_bar='tqdm')\n",
- "print(datasets['train'])\n",
- "\n",
- "vocabs = {}\n",
- "vocabs['label'] = Vocabulary().from_dataset(datasets['train'].concat(datasets['test'], inplace=False), field_name='label')\n",
- "vocabs['text'] = Vocabulary().from_dataset(datasets['train'].concat(datasets['test'], inplace=False), field_name='text')\n",
- "print(vocabs['label'].word2idx)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "数据集(比如:分开的训练集、验证集和测试集)以及各个field对应的vocabulary。\n",
- " 该对象一般由fastNLP中各种Loader的load函数生成,可以通过以下的方法获取里面的内容"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "In total 2 datasets:\n",
- "\ttrain has 10 instances.\n",
- "\ttest has 10 instances.\n",
- "In total 2 vocabs:\n",
- "\tlabel has 8 entries.\n",
- "\ttext has 1687 entries.\n",
- "\n"
- ]
- }
- ],
- "source": [
- "data_bundle = DataBundle(datasets=datasets, vocabs=vocabs)\n",
- "print(data_bundle)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 1.2 dataloader 的结构与使用"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 2. fastNLP 中的 tokenizer\n",
- "\n",
- "### 2.1 传统 GloVe 词嵌入的加载"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 2.2 PreTrainTokenizer 的提出\n",
- "\n",
- "在`fastNLP 0.8`中,**使用`PreTrainedTokenizer`模块来为数据集中的词语进行词向量的标注**\n",
- "\n",
- "  需要注意的是,`PreTrainedTokenizer`模块的下载和导入**需要确保环境安装了`transformers`模块**\n",
- "\n",
- "  这是因为 `fastNLP 0.8`中`PreTrainedTokenizer`模块的实现基于`Huggingface Transformers`库\n",
- "\n",
- "**`Huggingface Transformers`是基于一个开源的**,**基于`transformer`模型结构提供的预训练语言库**\n",
- "\n",
- "  包含了多种经典的基于`transformer`的预训练模型,如`BERT`、`BART`、`RoBERTa`、`GPT2`、`CPT`\n",
- "\n",
- "  更多相关内容可以参考`Huggingface Transformers`的[相关论文](https://arxiv.org/pdf/1910.03771.pdf)、[官方文档](https://huggingface.co/transformers/)以及[的代码仓库](https://github.com/huggingface/transformers)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 2.3 BertTokenizer 的基本使用\n",
- "\n",
- "在`fastNLP 0.8`中,以`PreTrainedTokenizer`为基类,泛化出多个子类,实现基于`BERT`等模型的标注\n",
- "\n",
- "  本节以`BertTokenizer`模块为例,展示`PreTrainedTokenizer`模块的使用方法与应用实例\n",
- "\n",
- "**`BertTokenizer`的初始化包括 导入模块和导入数据 两步**,先通过从`fastNLP.transformers.torch`中\n",
- "\n",
- "  导入`BertTokenizer`模块,再通过`from_pretrained`方法指定`tokenizer`参数类型下载\n",
- "\n",
- "  其中,**`'bert-base-uncased'`指定`tokenizer`使用的预训练`BERT`类型**:单词不区分大小写\n",
- "\n",
- "    **模块层数`L=12`**,**隐藏层维度`H=768`**,**自注意力头数`A=12`**,**总参数量`110M`**\n",
- "\n",
- "  另外,模型参数自动下载至 home 目录下的`~\\.cache\\huggingface\\transformers`文件夹中"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "scrolled": false
- },
- "outputs": [],
- "source": [
- "from fastNLP.transformers.torch import BertTokenizer\n",
- "\n",
- "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "dir(tokenizer)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 3. 实例:NG20 数据集的完整加载过程\n",
- "\n",
- "### 3.1 使用 BertTokenizer 处理数据集\n",
- "\n",
- "在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n",
- "\n",
- "  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n",
- "\n",
- "在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n",
- "\n",
- "  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "from fastNLP import DataSet\n",
- "from fastNLP import Vocabulary\n",
- "\n",
- "dataset = DataSet.from_pandas(pd.read_csv('./data/ng20_test.csv'))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from functools import partial\n",
- "\n",
- "encode = partial(tokenizer.encode_plus, max_length=100, truncation=True,\n",
- " return_attention_mask=True)\n",
- "# 会新增 input_ids 、 attention_mask 和 token_type_ids 这三个 field\n",
- "dataset.apply_field_more(encode, field_name='text')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "target_vocab = Vocabulary(padding=None, unknown=None)\n",
- "\n",
- "target_vocab.from_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='label')\n",
- "target_vocab.index_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='label',\n",
- " new_field_name='labels')\n",
- "# 需要将 input_ids 的 pad 值设置为 tokenizer 的 pad 值\n",
- "dataset.set_pad('input_ids', pad_val=tokenizer.pad_token_id)\n",
- "dataset.set_ignore('label', 'text') # 因为 label 是原始的不需要的 str ,所以我们可以忽略它,让它不要在 batch 的输出中出现"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 1
- }
|