| @@ -0,0 +1,11 @@ | |||
| import cv2 | |||
| import os | |||
| import hashlib | |||
| def verticalMappingToFolder(image): | |||
| name = hashlib.md5(image.data).hexdigest()[:8] | |||
| print(name) | |||
| cv2.imwrite("./cache/finemapping/"+name+".png",image) | |||
| @@ -0,0 +1,103 @@ | |||
| # -- coding: UTF-8 | |||
| import cv2 | |||
| import matplotlib.pyplot as plt | |||
| from sklearn.cluster import KMeans | |||
| import os | |||
| boundaries = [ | |||
| ([100,80,0],[240,220,110]), # yellow | |||
| ([0,40,50],[110,180,250]), # blue | |||
| ([0,60,0],[60,160,70]), # green | |||
| ] | |||
| color_attr = ["黄牌","蓝牌",'绿牌','白牌','黑牌'] | |||
| threhold_green = 13 | |||
| threhold_blue = 13 | |||
| threhold_yellow1 = 50 | |||
| threhold_yellow2 = 70 | |||
| # plt.figure() | |||
| # plt.axis("off") | |||
| # plt.imshow(image) | |||
| # plt.show() | |||
| import numpy as np | |||
| def centroid_histogram(clt): | |||
| numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1) | |||
| (hist, _) = np.histogram(clt.labels_, bins=numLabels) | |||
| # normalize the histogram, such that it sums to one | |||
| hist = hist.astype("float") | |||
| hist /= hist.sum() | |||
| # return the histogram | |||
| return hist | |||
| def plot_colors(hist, centroids): | |||
| bar = np.zeros((50, 300, 3), dtype="uint8") | |||
| startX = 0 | |||
| for (percent, color) in zip(hist, centroids): | |||
| endX = startX + (percent * 300) | |||
| cv2.rectangle(bar, (int(startX), 0), (int(endX), 50), | |||
| color.astype("uint8").tolist(), -1) | |||
| startX = endX | |||
| # return the bar chart | |||
| return bar | |||
| def search_boundaries(color): | |||
| for i,color_bound in enumerate(boundaries): | |||
| if np.all(color >= color_bound[0]) and np.all(color <= color_bound[1]): | |||
| return i | |||
| return -1 | |||
| def judge_color(color): | |||
| r = color[0] | |||
| g = color[1] | |||
| b = color[2] | |||
| if g - r >= threhold_green and g - b >= threhold_green: | |||
| return 2 | |||
| if b - r >= threhold_blue and b - g >= threhold_blue: | |||
| return 1 | |||
| if r- b > threhold_yellow2 and g - b > threhold_yellow2: | |||
| return 0 | |||
| if r > 200 and b > 200 and g > 200: | |||
| return 3 | |||
| if r < 50 and b < 50 and g < 50: | |||
| return 4 | |||
| return -1 | |||
| def judge_plate_color(img): | |||
| image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |||
| image = image.reshape((image.shape[0] * image.shape[1], 3)) | |||
| clt = KMeans(n_clusters=2) | |||
| clt.fit(image) | |||
| hist = centroid_histogram(clt) | |||
| index = np.argmax(hist) | |||
| #print clt.cluster_centers_[index] | |||
| #color_index = search_boundaries(clt.cluster_centers_[index]) | |||
| color_index = judge_color(clt.cluster_centers_[index]) | |||
| if color_index == -1: | |||
| if index == 0: | |||
| secound_index = 1 | |||
| else: | |||
| secound_index = 0 | |||
| color_index = judge_color(clt.cluster_centers_[secound_index]) | |||
| if color_index == -1: | |||
| print(clt.cluster_centers_) | |||
| bar = plot_colors(hist, clt.cluster_centers_) | |||
| # show our color bart | |||
| plt.figure() | |||
| plt.axis("off") | |||
| plt.imshow(bar) | |||
| plt.show() | |||
| if color_index != -1: | |||
| return color_attr[color_index],clt.cluster_centers_[index] | |||
| else: | |||
| return None,clt.cluster_centers_[index] | |||
| @@ -0,0 +1,6 @@ | |||
| import json | |||
| with open("/Users/universe/ProgramUniverse/zeusees/HyperLPR/config.json") as f: | |||
| configuration = json.load(f) | |||
| @@ -0,0 +1,100 @@ | |||
| #coding=utf-8 | |||
| import numpy as np | |||
| import cv2 | |||
| import time | |||
| from matplotlib import pyplot as plt | |||
| import math | |||
| from scipy.ndimage import filters | |||
| # | |||
| # def strokeFiter(): | |||
| # pass; | |||
| def angle(x,y): | |||
| return int(math.atan2(float(y),float(x))*180.0/3.1415) | |||
| def h_rot(src, angle, scale=1.0): | |||
| w = src.shape[1] | |||
| h = src.shape[0] | |||
| rangle = np.deg2rad(angle) | |||
| nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale | |||
| nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale | |||
| rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) | |||
| rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0])) | |||
| rot_mat[0,2] += rot_move[0] | |||
| rot_mat[1,2] += rot_move[1] | |||
| return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) | |||
| pass | |||
| def v_rot(img, angel, shape, max_angel): | |||
| size_o = [shape[1],shape[0]] | |||
| size = (shape[1]+ int(shape[0]*np.cos((float(max_angel )/180) * 3.14)),shape[0]) | |||
| interval = abs( int( np.sin((float(angel) /180) * 3.14)* shape[0])) | |||
| pts1 = np.float32([[0,0],[0,size_o[1]],[size_o[0],0],[size_o[0],size_o[1]]]) | |||
| if(angel>0): | |||
| pts2 = np.float32([[interval,0],[0,size[1] ],[size[0],0 ],[size[0]-interval,size_o[1]]]) | |||
| else: | |||
| pts2 = np.float32([[0,0],[interval,size[1] ],[size[0]-interval,0 ],[size[0],size_o[1]]]) | |||
| M = cv2.getPerspectiveTransform(pts1,pts2) | |||
| dst = cv2.warpPerspective(img,M,size) | |||
| return dst,M | |||
| def skew_detection(image_gray): | |||
| h, w = image_gray.shape[:2] | |||
| eigen = cv2.cornerEigenValsAndVecs(image_gray,12, 5) | |||
| angle_sur = np.zeros(180,np.uint) | |||
| eigen = eigen.reshape(h, w, 3, 2) | |||
| flow = eigen[:,:,2] | |||
| vis = image_gray.copy() | |||
| vis[:] = (192 + np.uint32(vis)) / 2 | |||
| d = 12 | |||
| points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) | |||
| for x, y in points: | |||
| vx, vy = np.int32(flow[int(y), int(x)]*d) | |||
| # cv2.line(rgb, (x-vx, y-vy), (x+vx, y+vy), (0, 355, 0), 1, cv2.LINE_AA) | |||
| ang = angle(vx,vy) | |||
| angle_sur[(ang+180)%180] +=1 | |||
| # torr_bin = 30 | |||
| angle_sur = angle_sur.astype(np.float) | |||
| angle_sur = (angle_sur-angle_sur.min())/(angle_sur.max()-angle_sur.min()) | |||
| angle_sur = filters.gaussian_filter1d(angle_sur,5) | |||
| skew_v_val = angle_sur[20:180-20].max() | |||
| skew_v = angle_sur[30:180-30].argmax() + 30 | |||
| skew_h_A = angle_sur[0:30].max() | |||
| skew_h_B = angle_sur[150:180].max() | |||
| skew_h = 0 | |||
| if (skew_h_A > skew_v_val*0.3 or skew_h_B > skew_v_val*0.3): | |||
| if skew_h_A>=skew_h_B: | |||
| skew_h = angle_sur[0:20].argmax() | |||
| else: | |||
| skew_h = - angle_sur[160:180].argmax() | |||
| return skew_h,skew_v | |||
| def fastDeskew(image): | |||
| image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) | |||
| skew_h,skew_v = skew_detection(image_gray) | |||
| print("校正角度 h ",skew_h,"v",skew_v) | |||
| deskew,M = v_rot(image,int((90-skew_v)*1.5),image.shape,60) | |||
| return deskew,M | |||
| if __name__ == '__main__': | |||
| fn = './dataset/0.jpg' | |||
| img = cv2.imread(fn) | |||
| gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |||
| skew_h,skew_v = skew_detection(gray) | |||
| img = v_rot(img,(90-skew_v ),img.shape,60) | |||
| # img = h_rot(img,skew_h) | |||
| # if img.shape[0]>img.shape[1]: | |||
| # img = h_rot(img, -90) | |||
| plt.show() | |||
| cv2.waitKey() | |||
| @@ -0,0 +1,76 @@ | |||
| import cv2 | |||
| import numpy as np | |||
| watch_cascade = cv2.CascadeClassifier('./model/cascade.xml') | |||
| def computeSafeRegion(shape,bounding_rect): | |||
| top = bounding_rect[1] # y | |||
| bottom = bounding_rect[1] + bounding_rect[3] # y + h | |||
| left = bounding_rect[0] # x | |||
| right = bounding_rect[0] + bounding_rect[2] # x + w | |||
| min_top = 0 | |||
| max_bottom = shape[0] | |||
| min_left = 0 | |||
| max_right = shape[1] | |||
| # print "computeSateRegion input shape",shape | |||
| if top < min_top: | |||
| top = min_top | |||
| # print "tap top 0" | |||
| if left < min_left: | |||
| left = min_left | |||
| # print "tap left 0" | |||
| if bottom > max_bottom: | |||
| bottom = max_bottom | |||
| #print "tap max_bottom max" | |||
| if right > max_right: | |||
| right = max_right | |||
| #print "tap max_right max" | |||
| # print "corr",left,top,right,bottom | |||
| return [left,top,right-left,bottom-top] | |||
| def cropped_from_image(image,rect): | |||
| x, y, w, h = computeSafeRegion(image.shape,rect) | |||
| return image[y:y+h,x:x+w] | |||
| def detectPlateRough(image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05): | |||
| print(image_gray.shape) | |||
| if top_bottom_padding_rate>0.2: | |||
| print("error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate) | |||
| exit(1) | |||
| height = image_gray.shape[0] | |||
| padding = int(height*top_bottom_padding_rate) | |||
| scale = image_gray.shape[1]/float(image_gray.shape[0]) | |||
| image = cv2.resize(image_gray, (int(scale*resize_h), resize_h)) | |||
| image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]] | |||
| image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY) | |||
| watches = watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40)) | |||
| cropped_images = [] | |||
| for (x, y, w, h) in watches: | |||
| cropped_origin = cropped_from_image(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
| x -= w * 0.14 | |||
| w += w * 0.28 | |||
| y -= h * 0.6 | |||
| h += h * 1.1; | |||
| cropped = cropped_from_image(image_color_cropped, (int(x), int(y), int(w), int(h))) | |||
| cropped_images.append([cropped,[x, y+padding, w, h],cropped_origin]) | |||
| return cropped_images | |||
| @@ -0,0 +1,63 @@ | |||
| #coding=utf-8 | |||
| from keras import backend as K | |||
| from keras.models import load_model | |||
| from keras.layers import * | |||
| import numpy as np | |||
| import random | |||
| import string | |||
| import cv2 | |||
| from . import e2emodel as model | |||
| chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", | |||
| "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", | |||
| "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", | |||
| "Y", "Z","港","学","使","警","澳","挂","军","北","南","广","沈","兰","成","济","海","民","航","空" | |||
| ]; | |||
| pred_model = model.construct_model("./model/ocr_plate_all_w_rnn_2.h5",) | |||
| import time | |||
| def fastdecode(y_pred): | |||
| results = "" | |||
| confidence = 0.0 | |||
| table_pred = y_pred.reshape(-1, len(chars)+1) | |||
| res = table_pred.argmax(axis=1) | |||
| for i,one in enumerate(res): | |||
| if one<len(chars) and (i==0 or (one!=res[i-1])): | |||
| results+= chars[one] | |||
| confidence+=table_pred[i][one] | |||
| confidence/= len(results) | |||
| return results,confidence | |||
| def recognizeOne(src): | |||
| # x_tempx= cv2.imread(src) | |||
| x_tempx = src | |||
| # x_tempx = cv2.bitwise_not(x_tempx) | |||
| x_temp = cv2.resize(x_tempx,( 160,40)) | |||
| x_temp = x_temp.transpose(1, 0, 2) | |||
| t0 = time.time() | |||
| y_pred = pred_model.predict(np.array([x_temp])) | |||
| y_pred = y_pred[:,2:,:] | |||
| # plt.imshow(y_pred.reshape(16,66)) | |||
| # plt.show() | |||
| # | |||
| # cv2.imshow("x_temp",x_tempx) | |||
| # cv2.waitKey(0) | |||
| return fastdecode(y_pred) | |||
| # | |||
| # | |||
| # import os | |||
| # | |||
| # path = "/Users/yujinke/PycharmProjects/HyperLPR_Python_web/cache/finemapping" | |||
| # for filename in os.listdir(path): | |||
| # if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".bmp"): | |||
| # x = os.path.join(path,filename) | |||
| # recognizeOne(x) | |||
| # # print time.time() - t0 | |||
| # | |||
| # # cv2.imshow("x",x) | |||
| # # cv2.waitKey() | |||
| @@ -0,0 +1,34 @@ | |||
| from keras import backend as K | |||
| from keras.models import * | |||
| from keras.layers import * | |||
| from . import e2e | |||
| def ctc_lambda_func(args): | |||
| y_pred, labels, input_length, label_length = args | |||
| y_pred = y_pred[:, 2:, :] | |||
| return K.ctc_batch_cost(labels, y_pred, input_length, label_length) | |||
| def construct_model(model_path): | |||
| input_tensor = Input((None, 40, 3)) | |||
| x = input_tensor | |||
| base_conv = 32 | |||
| for i in range(3): | |||
| x = Conv2D(base_conv * (2 ** (i)), (3, 3),padding="same")(x) | |||
| x = BatchNormalization()(x) | |||
| x = Activation('relu')(x) | |||
| x = MaxPooling2D(pool_size=(2, 2))(x) | |||
| x = Conv2D(256, (5, 5))(x) | |||
| x = BatchNormalization()(x) | |||
| x = Activation('relu')(x) | |||
| x = Conv2D(1024, (1, 1))(x) | |||
| x = BatchNormalization()(x) | |||
| x = Activation('relu')(x) | |||
| x = Conv2D(len(e2e.chars)+1, (1, 1))(x) | |||
| x = Activation('softmax')(x) | |||
| base_model = Model(inputs=input_tensor, outputs=x) | |||
| base_model.load_weights(model_path) | |||
| return base_model | |||
| @@ -0,0 +1,130 @@ | |||
| #coding=utf-8 | |||
| import cv2 | |||
| import numpy as np | |||
| from . import niblack_thresholding as nt | |||
| from . import deskew | |||
| def fitLine_ransac(pts,zero_add = 0 ): | |||
| if len(pts)>=2: | |||
| [vx, vy, x, y] = cv2.fitLine(pts, cv2.DIST_HUBER, 0, 0.01, 0.01) | |||
| lefty = int((-x * vy / vx) + y) | |||
| righty = int(((136- x) * vy / vx) + y) | |||
| return lefty+30+zero_add,righty+30+zero_add | |||
| return 0,0 | |||
| #精定位算法 | |||
| def findContoursAndDrawBoundingBox(image_rgb): | |||
| line_upper = []; | |||
| line_lower = []; | |||
| line_experiment = [] | |||
| grouped_rects = [] | |||
| gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
| # for k in np.linspace(-1.5, -0.2,10): | |||
| for k in np.linspace(-50, 0, 15): | |||
| # thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k) | |||
| # binary_niblack = gray_image > thresh_niblack | |||
| # binary_niblack = binary_niblack.astype(np.uint8) * 255 | |||
| binary_niblack = cv2.adaptiveThreshold(gray_image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,17,k) | |||
| # cv2.imshow("image1",binary_niblack) | |||
| # cv2.waitKey(0) | |||
| imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
| for contour in contours: | |||
| bdbox = cv2.boundingRect(contour) | |||
| if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1200) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100): | |||
| # cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1) | |||
| line_upper.append([bdbox[0],bdbox[1]]) | |||
| line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
| line_experiment.append([bdbox[0],bdbox[1]]) | |||
| line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
| # grouped_rects.append(bdbox) | |||
| rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE) | |||
| leftyA, rightyA = fitLine_ransac(np.array(line_lower),3) | |||
| rows,cols = rgb.shape[:2] | |||
| # rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA) | |||
| leftyB, rightyB = fitLine_ransac(np.array(line_upper),-3) | |||
| rows,cols = rgb.shape[:2] | |||
| # rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA) | |||
| pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]]) | |||
| pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]]) | |||
| mat = cv2.getPerspectiveTransform(pts_map1,pts_map2) | |||
| image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC) | |||
| image,M = deskew.fastDeskew(image) | |||
| return image | |||
| #多级 | |||
| def findContoursAndDrawBoundingBox2(image_rgb): | |||
| line_upper = []; | |||
| line_lower = []; | |||
| line_experiment = [] | |||
| grouped_rects = [] | |||
| gray_image = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
| for k in np.linspace(-1.6, -0.2,10): | |||
| # for k in np.linspace(-15, 0, 15): | |||
| # # | |||
| # thresh_niblack = threshold_niblack(gray_image, window_size=21, k=k) | |||
| # binary_niblack = gray_image > thresh_niblack | |||
| # binary_niblack = binary_niblack.astype(np.uint8) * 255 | |||
| binary_niblack = nt.niBlackThreshold(gray_image,19,k) | |||
| # cv2.imshow("binary_niblack_opencv",binary_niblack_) | |||
| # cv2.imshow("binary_niblack_skimage", binary_niblack) | |||
| # cv2.waitKey(0) | |||
| imagex, contours, hierarchy = cv2.findContours(binary_niblack.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
| for contour in contours: | |||
| bdbox = cv2.boundingRect(contour) | |||
| if (bdbox[3]/float(bdbox[2])>0.7 and bdbox[3]*bdbox[2]>100 and bdbox[3]*bdbox[2]<1000) or (bdbox[3]/float(bdbox[2])>3 and bdbox[3]*bdbox[2]<100): | |||
| # cv2.rectangle(rgb,(bdbox[0],bdbox[1]),(bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]),(255,0,0),1) | |||
| line_upper.append([bdbox[0],bdbox[1]]) | |||
| line_lower.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
| line_experiment.append([bdbox[0],bdbox[1]]) | |||
| line_experiment.append([bdbox[0]+bdbox[2],bdbox[1]+bdbox[3]]) | |||
| # grouped_rects.append(bdbox) | |||
| rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE) | |||
| leftyA, rightyA = fitLine_ransac(np.array(line_lower),2) | |||
| rows,cols = rgb.shape[:2] | |||
| # rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA) | |||
| leftyB, rightyB = fitLine_ransac(np.array(line_upper),-4) | |||
| rows,cols = rgb.shape[:2] | |||
| # rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA) | |||
| pts_map1 = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]]) | |||
| pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]]) | |||
| mat = cv2.getPerspectiveTransform(pts_map1,pts_map2) | |||
| image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC) | |||
| image,M= deskew.fastDeskew(image) | |||
| return image | |||
| @@ -0,0 +1,92 @@ | |||
| #coding=utf-8 | |||
| from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense | |||
| from keras.models import Model, Sequential | |||
| from keras.layers.advanced_activations import PReLU | |||
| from keras.optimizers import adam | |||
| import numpy as np | |||
| import cv2 | |||
| def getModel(): | |||
| input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
| x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
| x = Activation("relu", name='relu1')(x) | |||
| x = MaxPool2D(pool_size=2)(x) | |||
| x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) | |||
| x = Activation("relu", name='relu2')(x) | |||
| x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
| x = Activation("relu", name='relu3')(x) | |||
| x = Flatten()(x) | |||
| output = Dense(2,name = "dense")(x) | |||
| output = Activation("relu", name='relu4')(output) | |||
| model = Model([input], [output]) | |||
| return model | |||
| model = getModel() | |||
| model.load_weights("./model/model12.h5") | |||
| def getmodel(): | |||
| return model | |||
| def gettest_model(): | |||
| input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input | |||
| A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) | |||
| B = Activation("relu", name='relu1')(A) | |||
| C = MaxPool2D(pool_size=2)(B) | |||
| x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C) | |||
| x = Activation("relu", name='relu2')(x) | |||
| x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) | |||
| K = Activation("relu", name='relu3')(x) | |||
| x = Flatten()(K) | |||
| dense = Dense(2,name = "dense")(x) | |||
| output = Activation("relu", name='relu4')(dense) | |||
| x = Model([input], [output]) | |||
| x.load_weights("./model/model12.h5") | |||
| ok = Model([input], [dense]) | |||
| for layer in ok.layers: | |||
| print(layer) | |||
| return ok | |||
| def finemappingVertical(image): | |||
| resized = cv2.resize(image,(66,16)) | |||
| resized = resized.astype(np.float)/255 | |||
| res= model.predict(np.array([resized]))[0] | |||
| print("keras_predict",res) | |||
| res =res*image.shape[1] | |||
| res = res.astype(np.int) | |||
| H,T = res | |||
| H-=3 | |||
| #3 79.86 | |||
| #4 79.3 | |||
| #5 79.5 | |||
| #6 78.3 | |||
| #T | |||
| #T+1 80.9 | |||
| #T+2 81.75 | |||
| #T+3 81.75 | |||
| if H<0: | |||
| H=0 | |||
| T+=2; | |||
| if T>= image.shape[1]-1: | |||
| T= image.shape[1]-1 | |||
| image = image[0:35,H:T+2] | |||
| image = cv2.resize(image, (int(136), int(36))) | |||
| return image | |||
| @@ -0,0 +1,18 @@ | |||
| import cv2 | |||
| import numpy as np | |||
| def niBlackThreshold( src, blockSize, k, binarizationMethod= 0 ): | |||
| mean = cv2.boxFilter(src,cv2.CV_32F,(blockSize, blockSize),borderType=cv2.BORDER_REPLICATE) | |||
| sqmean = cv2.sqrBoxFilter(src, cv2.CV_32F, (blockSize, blockSize), borderType = cv2.BORDER_REPLICATE) | |||
| variance = sqmean - (mean*mean) | |||
| stddev = np.sqrt(variance) | |||
| thresh = mean + stddev * float(-k) | |||
| thresh = thresh.astype(src.dtype) | |||
| k = (src>thresh)*255 | |||
| k = k.astype(np.uint8) | |||
| return k | |||
| # cv2.imshow() | |||
| @@ -0,0 +1,246 @@ | |||
| #coding=utf-8 | |||
| from . import detect | |||
| from . import finemapping as fm | |||
| from . import segmentation | |||
| import cv2 | |||
| import time | |||
| import numpy as np | |||
| from PIL import ImageFont | |||
| from PIL import Image | |||
| from PIL import ImageDraw | |||
| import json | |||
| import sys | |||
| from . import typeDistinguish as td | |||
| import imp | |||
| imp.reload(sys) | |||
| fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0); | |||
| from . import e2e | |||
| #寻找车牌左右边界 | |||
| def find_edge(image): | |||
| sum_i = image.sum(axis=0) | |||
| sum_i = sum_i.astype(np.float) | |||
| sum_i/=image.shape[0]*255 | |||
| # print sum_i | |||
| start= 0 ; | |||
| end = image.shape[1]-1 | |||
| for i,one in enumerate(sum_i): | |||
| if one>0.4: | |||
| start = i; | |||
| if start-3<0: | |||
| start = 0 | |||
| else: | |||
| start -=3 | |||
| break; | |||
| for i,one in enumerate(sum_i[::-1]): | |||
| if one>0.4: | |||
| end = end - i; | |||
| if end+4>image.shape[1]-1: | |||
| end = image.shape[1]-1 | |||
| else: | |||
| end+=4 | |||
| break | |||
| return start,end | |||
| #垂直边缘检测 | |||
| def verticalEdgeDetection(image): | |||
| image_sobel = cv2.Sobel(image.copy(),cv2.CV_8U,1,0) | |||
| # image = auto_canny(image_sobel) | |||
| # img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT | |||
| # canny_image = auto_canny(image) | |||
| flag,thres = cv2.threshold(image_sobel,0,255,cv2.THRESH_OTSU|cv2.THRESH_BINARY) | |||
| print(flag) | |||
| flag,thres = cv2.threshold(image_sobel,int(flag*0.7),255,cv2.THRESH_BINARY) | |||
| # thres = simpleThres(image_sobel) | |||
| kernal = np.ones(shape=(3,15)) | |||
| thres = cv2.morphologyEx(thres,cv2.MORPH_CLOSE,kernal) | |||
| return thres | |||
| #确定粗略的左右边界 | |||
| def horizontalSegmentation(image): | |||
| thres = verticalEdgeDetection(image) | |||
| # thres = thres*image | |||
| head,tail = find_edge(thres) | |||
| # print head,tail | |||
| # cv2.imshow("edge",thres) | |||
| tail = tail+5 | |||
| if tail>135: | |||
| tail = 135 | |||
| image = image[0:35,head:tail] | |||
| image = cv2.resize(image, (int(136), int(36))) | |||
| return image | |||
| #打上boundingbox和标签 | |||
| def drawRectBox(image,rect,addText): | |||
| cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2, cv2.LINE_AA) | |||
| cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1, cv2.LINE_AA) | |||
| img = Image.fromarray(image) | |||
| draw = ImageDraw.Draw(img) | |||
| #draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC) | |||
| draw.text((int(rect[0]+1), int(rect[1]-16)), addText, (255, 255, 255), font=fontC) | |||
| imagex = np.array(img) | |||
| return imagex | |||
| from . import cache | |||
| from . import finemapping_vertical as fv | |||
| def RecognizePlateJson(image): | |||
| images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
| jsons = [] | |||
| for j,plate in enumerate(images): | |||
| plate,rect,origin_plate =plate | |||
| res, confidence = e2e.recognizeOne(origin_plate) | |||
| print("res",res) | |||
| cv2.imwrite("./"+str(j)+"_rough.jpg",plate) | |||
| # print "车牌类型:",ptype | |||
| # plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
| plate =cv2.resize(plate,(136,int(36*2.5))) | |||
| t1 = time.time() | |||
| ptype = td.SimplePredict(plate) | |||
| if ptype>0 and ptype<4: | |||
| plate = cv2.bitwise_not(plate) | |||
| # demo = verticalEdgeDetection(plate) | |||
| image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
| image_rgb = fv.finemappingVertical(image_rgb) | |||
| cache.verticalMappingToFolder(image_rgb) | |||
| # print time.time() - t1,"校正" | |||
| print("e2e:",e2e.recognizeOne(image_rgb)[0]) | |||
| image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY) | |||
| cv2.imwrite("./"+str(j)+".jpg",image_gray) | |||
| # image_gray = horizontalSegmentation(image_gray) | |||
| t2 = time.time() | |||
| res, confidence = e2e.recognizeOne(image_rgb) | |||
| res_json = {} | |||
| if confidence > 0.6: | |||
| res_json["Name"] = res | |||
| res_json["Type"] = td.plateType[ptype] | |||
| res_json["Confidence"] = confidence; | |||
| res_json["x"] = int(rect[0]) | |||
| res_json["y"] = int(rect[1]) | |||
| res_json["w"] = int(rect[2]) | |||
| res_json["h"] = int(rect[3]) | |||
| jsons.append(res_json) | |||
| print(json.dumps(jsons,ensure_ascii=False,encoding="gb2312")) | |||
| return json.dumps(jsons,ensure_ascii=False,encoding="gb2312") | |||
| def SimpleRecognizePlateByE2E(image): | |||
| t0 = time.time() | |||
| images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
| res_set = [] | |||
| for j,plate in enumerate(images): | |||
| plate, rect, origin_plate =plate | |||
| # plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
| plate =cv2.resize(plate,(136,36*2)) | |||
| res,confidence = e2e.recognizeOne(origin_plate) | |||
| print("res",res) | |||
| t1 = time.time() | |||
| ptype = td.SimplePredict(plate) | |||
| if ptype>0 and ptype<5: | |||
| # pass | |||
| plate = cv2.bitwise_not(plate) | |||
| image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
| image_rgb = fv.finemappingVertical(image_rgb) | |||
| image_rgb = fv.finemappingVertical(image_rgb) | |||
| cache.verticalMappingToFolder(image_rgb) | |||
| cv2.imwrite("./"+str(j)+".jpg",image_rgb) | |||
| res,confidence = e2e.recognizeOne(image_rgb) | |||
| print(res,confidence) | |||
| res_set.append([[],res,confidence]) | |||
| if confidence>0.7: | |||
| image = drawRectBox(image, rect, res+" "+str(round(confidence,3))) | |||
| return image,res_set | |||
| def SimpleRecognizePlate(image): | |||
| t0 = time.time() | |||
| images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1) | |||
| res_set = [] | |||
| for j,plate in enumerate(images): | |||
| plate, rect, origin_plate =plate | |||
| # plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY) | |||
| plate =cv2.resize(plate,(136,36*2)) | |||
| t1 = time.time() | |||
| ptype = td.SimplePredict(plate) | |||
| if ptype>0 and ptype<5: | |||
| plate = cv2.bitwise_not(plate) | |||
| image_rgb = fm.findContoursAndDrawBoundingBox(plate) | |||
| image_rgb = fv.finemappingVertical(image_rgb) | |||
| cache.verticalMappingToFolder(image_rgb) | |||
| print("e2e:", e2e.recognizeOne(image_rgb)) | |||
| image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY) | |||
| # image_gray = horizontalSegmentation(image_gray) | |||
| cv2.imshow("image_gray",image_gray) | |||
| # cv2.waitKey() | |||
| cv2.imwrite("./"+str(j)+".jpg",image_gray) | |||
| # cv2.imshow("image",image_gray) | |||
| # cv2.waitKey(0) | |||
| print("校正",time.time() - t1,"s") | |||
| # cv2.imshow("image,",image_gray) | |||
| # cv2.waitKey(0) | |||
| t2 = time.time() | |||
| val = segmentation.slidingWindowsEval(image_gray) | |||
| # print val | |||
| print("分割和识别",time.time() - t2,"s") | |||
| if len(val)==3: | |||
| blocks, res, confidence = val | |||
| if confidence/7>0.7: | |||
| image = drawRectBox(image,rect,res) | |||
| res_set.append(res) | |||
| for i,block in enumerate(blocks): | |||
| block_ = cv2.resize(block,(25,25)) | |||
| block_ = cv2.cvtColor(block_,cv2.COLOR_GRAY2BGR) | |||
| image[j * 25:(j * 25) + 25, i * 25:(i * 25) + 25] = block_ | |||
| if image[j*25:(j*25)+25,i*25:(i*25)+25].shape == block_.shape: | |||
| pass | |||
| if confidence>0: | |||
| print("车牌:",res,"置信度:",confidence/7) | |||
| else: | |||
| pass | |||
| # print "不确定的车牌:", res, "置信度:", confidence | |||
| print(time.time() - t0,"s") | |||
| return image,res_set | |||
| @@ -0,0 +1,154 @@ | |||
| #coding=utf-8 | |||
| from keras.models import Sequential | |||
| from keras.layers import Dense, Dropout, Activation, Flatten | |||
| from keras.layers import Conv2D,MaxPool2D | |||
| from keras.optimizers import SGD | |||
| from keras import backend as K | |||
| K.set_image_dim_ordering('tf') | |||
| import cv2 | |||
| import numpy as np | |||
| index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9, "苏": 10, "浙": 11, "皖": 12, | |||
| "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19, "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, | |||
| "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, | |||
| "6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, | |||
| "J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60, | |||
| "W": 61, "X": 62, "Y": 63, "Z": 64,"港":65,"学":66 ,"O":67 ,"使":68,"警":69,"澳":70,"挂":71}; | |||
| chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", | |||
| "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", | |||
| "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", | |||
| "Q", "R", "S", "T", "U", "V", "W", "X", | |||
| "Y", "Z","港","学","O","使","警","澳","挂" ]; | |||
| def Getmodel_tensorflow(nb_classes): | |||
| # nb_classes = len(charset) | |||
| img_rows, img_cols = 23, 23 | |||
| # number of convolutional filters to use | |||
| nb_filters = 32 | |||
| # size of pooling area for max pooling | |||
| nb_pool = 2 | |||
| # convolution kernel size | |||
| nb_conv = 3 | |||
| # x = np.load('x.npy') | |||
| # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
| # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
| # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
| model = Sequential() | |||
| model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Dropout(0.25)) | |||
| model.add(Conv2D(32, (3, 3))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Dropout(0.25)) | |||
| model.add(Conv2D(512, (3, 3))) | |||
| # model.add(Activation('relu')) | |||
| # model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) | |||
| # model.add(Dropout(0.25)) | |||
| model.add(Flatten()) | |||
| model.add(Dense(512)) | |||
| model.add(Activation('relu')) | |||
| model.add(Dropout(0.5)) | |||
| model.add(Dense(nb_classes)) | |||
| model.add(Activation('softmax')) | |||
| model.compile(loss='categorical_crossentropy', | |||
| optimizer='adam', | |||
| metrics=['accuracy']) | |||
| return model | |||
| def Getmodel_ch(nb_classes): | |||
| # nb_classes = len(charset) | |||
| img_rows, img_cols = 23, 23 | |||
| # number of convolutional filters to use | |||
| nb_filters = 32 | |||
| # size of pooling area for max pooling | |||
| nb_pool = 2 | |||
| # convolution kernel size | |||
| nb_conv = 3 | |||
| # x = np.load('x.npy') | |||
| # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
| # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
| # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
| model = Sequential() | |||
| model.add(Conv2D(32, (5, 5),input_shape=(img_rows, img_cols,1))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Dropout(0.25)) | |||
| model.add(Conv2D(32, (3, 3))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Dropout(0.25)) | |||
| model.add(Conv2D(512, (3, 3))) | |||
| # model.add(Activation('relu')) | |||
| # model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) | |||
| # model.add(Dropout(0.25)) | |||
| model.add(Flatten()) | |||
| model.add(Dense(756)) | |||
| model.add(Activation('relu')) | |||
| model.add(Dropout(0.5)) | |||
| model.add(Dense(nb_classes)) | |||
| model.add(Activation('softmax')) | |||
| model.compile(loss='categorical_crossentropy', | |||
| optimizer='adam', | |||
| metrics=['accuracy']) | |||
| return model | |||
| model = Getmodel_tensorflow(65) | |||
| #构建网络 | |||
| model_ch = Getmodel_ch(31) | |||
| model_ch.load_weights("./model/char_chi_sim.h5") | |||
| # model_ch.save_weights("./model/char_chi_sim.h5") | |||
| model.load_weights("./model/char_rec.h5") | |||
| # model.save("./model/char_rec.h5") | |||
| def SimplePredict(image,pos): | |||
| image = cv2.resize(image, (23, 23)) | |||
| image = cv2.equalizeHist(image) | |||
| image = image.astype(np.float) / 255 | |||
| image -= image.mean() | |||
| image = np.expand_dims(image, 3) | |||
| if pos!=0: | |||
| res = np.array(model.predict(np.array([image]))[0]) | |||
| else: | |||
| res = np.array(model_ch.predict(np.array([image]))[0]) | |||
| zero_add = 0 ; | |||
| if pos==0: | |||
| res = res[:31] | |||
| elif pos==1: | |||
| res = res[31+10:65] | |||
| zero_add = 31+10 | |||
| else: | |||
| res = res[31:] | |||
| zero_add = 31 | |||
| max_id = res.argmax() | |||
| return res.max(),chars[max_id+zero_add],max_id+zero_add | |||
| @@ -0,0 +1,307 @@ | |||
| #coding=utf-8 | |||
| import cv2 | |||
| import numpy as np | |||
| # from matplotlib import pyplot as plt | |||
| import scipy.ndimage.filters as f | |||
| import scipy | |||
| import time | |||
| import scipy.signal as l | |||
| from keras.models import Sequential | |||
| from keras.layers import Dense, Dropout, Activation, Flatten | |||
| from keras.layers import Conv2D, MaxPool2D | |||
| from keras.optimizers import SGD | |||
| from keras import backend as K | |||
| K.set_image_dim_ordering('tf') | |||
| def Getmodel_tensorflow(nb_classes): | |||
| # nb_classes = len(charset) | |||
| img_rows, img_cols = 23, 23 | |||
| # number of convolutional filters to use | |||
| nb_filters = 16 | |||
| # size of pooling area for max pooling | |||
| nb_pool = 2 | |||
| # convolution kernel size | |||
| nb_conv = 3 | |||
| # x = np.load('x.npy') | |||
| # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
| # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
| # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
| model = Sequential() | |||
| model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols,1))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Conv2D(nb_filters, (nb_conv, nb_conv))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Flatten()) | |||
| model.add(Dense(256)) | |||
| model.add(Dropout(0.5)) | |||
| model.add(Activation('relu')) | |||
| model.add(Dense(nb_classes)) | |||
| model.add(Activation('softmax')) | |||
| model.compile(loss='categorical_crossentropy', | |||
| optimizer='sgd', | |||
| metrics=['accuracy']) | |||
| return model | |||
| def Getmodel_tensorflow_light(nb_classes): | |||
| # nb_classes = len(charset) | |||
| img_rows, img_cols = 23, 23 | |||
| # number of convolutional filters to use | |||
| nb_filters = 8 | |||
| # size of pooling area for max pooling | |||
| nb_pool = 2 | |||
| # convolution kernel size | |||
| nb_conv = 3 | |||
| # x = np.load('x.npy') | |||
| # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
| # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
| # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
| model = Sequential() | |||
| model.add(Conv2D(nb_filters, (nb_conv, nb_conv),input_shape=(img_rows, img_cols, 1))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Conv2D(nb_filters, (nb_conv * 2, nb_conv * 2))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Flatten()) | |||
| model.add(Dense(32)) | |||
| # model.add(Dropout(0.25)) | |||
| model.add(Activation('relu')) | |||
| model.add(Dense(nb_classes)) | |||
| model.add(Activation('softmax')) | |||
| model.compile(loss='categorical_crossentropy', | |||
| optimizer='adam', | |||
| metrics=['accuracy']) | |||
| return model | |||
| model = Getmodel_tensorflow_light(3) | |||
| model2 = Getmodel_tensorflow(3) | |||
| import os | |||
| model.load_weights("./model/char_judgement1.h5") | |||
| # model.save("./model/char_judgement1.h5") | |||
| model2.load_weights("./model/char_judgement.h5") | |||
| # model2.save("./model/char_judgement.h5") | |||
| model = model2 | |||
| def get_median(data): | |||
| data = sorted(data) | |||
| size = len(data) | |||
| # print size | |||
| if size % 2 == 0: # 判断列表长度为偶数 | |||
| median = (data[size//2]+data[size//2-1])/2 | |||
| data[0] = median | |||
| if size % 2 == 1: # 判断列表长度为奇数 | |||
| median = data[(size-1)//2] | |||
| data[0] = median | |||
| return data[0] | |||
| import time | |||
| def searchOptimalCuttingPoint(rgb,res_map,start,width_boundingbox,interval_range): | |||
| t0 = time.time() | |||
| # | |||
| # for x in xrange(10): | |||
| # res_map = np.vstack((res_map,res_map[-1])) | |||
| length = res_map.shape[0] | |||
| refine_s = -2; | |||
| if width_boundingbox>20: | |||
| refine_s = -9 | |||
| score_list = [] | |||
| interval_big = int(width_boundingbox * 0.3) # | |||
| p = 0 | |||
| for zero_add in range(start,start+50,3): | |||
| # for interval_small in xrange(-0,width_boundingbox/2): | |||
| for i in range(-8,int(width_boundingbox/1)-8): | |||
| for refine in range(refine_s, int(width_boundingbox/2+3)): | |||
| p1 = zero_add# this point is province | |||
| p2 = p1 + width_boundingbox +refine # | |||
| p3 = p2 + width_boundingbox + interval_big+i+1 | |||
| p4 = p3 + width_boundingbox +refine | |||
| p5 = p4 + width_boundingbox +refine | |||
| p6 = p5 + width_boundingbox +refine | |||
| p7 = p6 + width_boundingbox +refine | |||
| if p7>=length: | |||
| continue | |||
| score = res_map[p1][2]*3 -(res_map[p3][1]+res_map[p4][1]+res_map[p5][1]+res_map[p6][1]+res_map[p7][1])+7 | |||
| # print score | |||
| score_list.append([score,[p1,p2,p3,p4,p5,p6,p7]]) | |||
| p+=1 | |||
| print(p) | |||
| score_list = sorted(score_list , key=lambda x:x[0]) | |||
| # for one in score_list[-1][1]: | |||
| # cv2.line(debug,(one,0),(one,36),(255,0,0),1) | |||
| # # | |||
| # cv2.imshow("one",debug) | |||
| # cv2.waitKey(0) | |||
| # | |||
| print("寻找最佳点",time.time()-t0) | |||
| return score_list[-1] | |||
| import sys | |||
| sys.path.append('../') | |||
| from . import recognizer as cRP | |||
| from . import niblack_thresholding as nt | |||
| def refineCrop(sections,width=16): | |||
| new_sections = [] | |||
| for section in sections: | |||
| # cv2.imshow("section¡",section) | |||
| # cv2.blur(section,(3,3),3) | |||
| sec_center = np.array([section.shape[1]/2,section.shape[0]/2]) | |||
| binary_niblack = nt.niBlackThreshold(section,17,-0.255) | |||
| imagex, contours, hierarchy = cv2.findContours(binary_niblack,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) | |||
| boxs = [] | |||
| for contour in contours: | |||
| x,y,w,h = cv2.boundingRect(contour) | |||
| ratio = w/float(h) | |||
| if ratio<1 and h>36*0.4 and y<16\ | |||
| : | |||
| box = [x,y,w,h] | |||
| boxs.append([box,np.array([x+w/2,y+h/2])]) | |||
| # cv2.rectangle(section,(x,y),(x+w,y+h),255,1) | |||
| # print boxs | |||
| dis_ = np.array([ ((one[1]-sec_center)**2).sum() for one in boxs]) | |||
| if len(dis_)==0: | |||
| kernal = [0, 0, section.shape[1], section.shape[0]] | |||
| else: | |||
| kernal = boxs[dis_.argmin()][0] | |||
| center_c = (kernal[0]+kernal[2]/2,kernal[1]+kernal[3]/2) | |||
| w_2 = int(width/2) | |||
| h_2 = kernal[3]/2 | |||
| if center_c[0] - w_2< 0: | |||
| w_2 = center_c[0] | |||
| new_box = [center_c[0] - w_2,kernal[1],width,kernal[3]] | |||
| # print new_box[2]/float(new_box[3]) | |||
| if new_box[2]/float(new_box[3])>0.5: | |||
| # print "异常" | |||
| h = int((new_box[2]/0.35 )/2) | |||
| if h>35: | |||
| h = 35 | |||
| new_box[1] = center_c[1]- h | |||
| if new_box[1]<0: | |||
| new_box[1] = 1 | |||
| new_box[3] = h*2 | |||
| section = section[int(new_box[1]):int(new_box[1]+new_box[3]), int(new_box[0]):int(new_box[0]+new_box[2])] | |||
| # cv2.imshow("section",section) | |||
| # cv2.waitKey(0) | |||
| new_sections.append(section) | |||
| # print new_box | |||
| return new_sections | |||
| def slidingWindowsEval(image): | |||
| windows_size = 16; | |||
| stride = 1 | |||
| height= image.shape[0] | |||
| t0 = time.time() | |||
| data_sets = [] | |||
| for i in range(0,image.shape[1]-windows_size+1,stride): | |||
| data = image[0:height,i:i+windows_size] | |||
| data = cv2.resize(data,(23,23)) | |||
| # cv2.imshow("image",data) | |||
| data = cv2.equalizeHist(data) | |||
| data = data.astype(np.float)/255 | |||
| data= np.expand_dims(data,3) | |||
| data_sets.append(data) | |||
| res = model2.predict(np.array(data_sets)) | |||
| print("分割",time.time() - t0) | |||
| pin = res | |||
| p = 1 - (res.T)[1] | |||
| p = f.gaussian_filter1d(np.array(p,dtype=np.float),3) | |||
| lmin = l.argrelmax(np.array(p),order = 3)[0] | |||
| interval = [] | |||
| for i in range(len(lmin)-1): | |||
| interval.append(lmin[i+1]-lmin[i]) | |||
| if(len(interval)>3): | |||
| mid = get_median(interval) | |||
| else: | |||
| return [] | |||
| pin = np.array(pin) | |||
| res = searchOptimalCuttingPoint(image,pin,0,mid,3) | |||
| cutting_pts = res[1] | |||
| last = cutting_pts[-1] + mid | |||
| if last < image.shape[1]: | |||
| cutting_pts.append(last) | |||
| else: | |||
| cutting_pts.append(image.shape[1]-1) | |||
| name = "" | |||
| confidence =0.00 | |||
| seg_block = [] | |||
| for x in range(1,len(cutting_pts)): | |||
| if x != len(cutting_pts)-1 and x!=1: | |||
| section = image[0:36,cutting_pts[x-1]-2:cutting_pts[x]+2] | |||
| elif x==1: | |||
| c_head = cutting_pts[x - 1]- 2 | |||
| if c_head<0: | |||
| c_head=0 | |||
| c_tail = cutting_pts[x] + 2 | |||
| section = image[0:36, c_head:c_tail] | |||
| elif x==len(cutting_pts)-1: | |||
| end = cutting_pts[x] | |||
| diff = image.shape[1]-end | |||
| c_head = cutting_pts[x - 1] | |||
| c_tail = cutting_pts[x] | |||
| if diff<7 : | |||
| section = image[0:36, c_head-5:c_tail+5] | |||
| else: | |||
| diff-=1 | |||
| section = image[0:36, c_head - diff:c_tail + diff] | |||
| elif x==2: | |||
| section = image[0:36, cutting_pts[x - 1] - 3:cutting_pts[x-1]+ mid] | |||
| else: | |||
| section = image[0:36,cutting_pts[x-1]:cutting_pts[x]] | |||
| seg_block.append(section) | |||
| refined = refineCrop(seg_block,mid-1) | |||
| t0 = time.time() | |||
| for i,one in enumerate(refined): | |||
| res_pre = cRP.SimplePredict(one, i ) | |||
| # cv2.imshow(str(i),one) | |||
| # cv2.waitKey(0) | |||
| confidence+=res_pre[0] | |||
| name+= res_pre[1] | |||
| print("字符识别",time.time() - t0) | |||
| return refined,name,confidence | |||
| @@ -0,0 +1,56 @@ | |||
| #coding=utf-8 | |||
| from keras.models import Sequential | |||
| from keras.layers import Dense, Dropout, Activation, Flatten | |||
| from keras.layers import Conv2D, MaxPool2D | |||
| from keras.optimizers import SGD | |||
| from keras import backend as K | |||
| K.set_image_dim_ordering('tf') | |||
| import cv2 | |||
| import numpy as np | |||
| plateType = ["蓝牌","单层黄牌","新能源车牌","白色","黑色-港澳"] | |||
| def Getmodel_tensorflow(nb_classes): | |||
| # nb_classes = len(charset) | |||
| img_rows, img_cols = 9, 34 | |||
| # number of convolutional filters to use | |||
| nb_filters = 32 | |||
| # size of pooling area for max pooling | |||
| nb_pool = 2 | |||
| # convolution kernel size | |||
| nb_conv = 3 | |||
| # x = np.load('x.npy') | |||
| # y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes) | |||
| # weight = ((type_class - np.arange(type_class)) / type_class + 1) ** 3 | |||
| # weight = dict(zip(range(3063), weight / weight.mean())) # 调整权重,高频字优先 | |||
| model = Sequential() | |||
| model.add(Conv2D(16, (5, 5),input_shape=(img_rows, img_cols,3))) | |||
| model.add(Activation('relu')) | |||
| model.add(MaxPool2D(pool_size=(nb_pool, nb_pool))) | |||
| model.add(Flatten()) | |||
| model.add(Dense(64)) | |||
| model.add(Activation('relu')) | |||
| model.add(Dropout(0.5)) | |||
| model.add(Dense(nb_classes)) | |||
| model.add(Activation('softmax')) | |||
| model.compile(loss='categorical_crossentropy', | |||
| optimizer='adam', | |||
| metrics=['accuracy']) | |||
| return model | |||
| model = Getmodel_tensorflow(5) | |||
| model.load_weights("./model/plate_type.h5") | |||
| model.save("./model/plate_type.h5") | |||
| def SimplePredict(image): | |||
| image = cv2.resize(image, (34, 9)) | |||
| image = image.astype(np.float) / 255 | |||
| res = np.array(model.predict(np.array([image]))[0]) | |||
| return res.argmax() | |||