Browse Source

Revert "Adding vision to openai server"

tags/v0.3.12-rc0
Haixuan Xavier Tao GitHub 7 months ago
parent
commit
39785b56c1
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
13 changed files with 206 additions and 649 deletions
  1. +7
    -1
      apis/rust/node/src/event_stream/mod.rs
  2. +4
    -7
      apis/rust/node/src/event_stream/thread.rs
  3. +1
    -1
      binaries/daemon/src/spawn.rs
  4. +3
    -3
      examples/openai-server/dataflow-rust.yml
  5. +1
    -59
      examples/openai-server/openai_api_client.py
  6. +0
    -16
      examples/openai-server/qwenvl.yml
  7. +0
    -14
      libraries/arrow-convert/src/into_impls.rs
  8. +1
    -1
      node-hub/dora-mistral-rs/src/main.rs
  9. +78
    -327
      node-hub/dora-openai-server/dora_openai_server/main.py
  10. +11
    -9
      node-hub/dora-openai-server/pyproject.toml
  11. +31
    -112
      node-hub/dora-qwen2-5-vl/dora_qwen2_5_vl/main.py
  12. +69
    -55
      node-hub/openai-proxy-server/src/main.rs
  13. +0
    -44
      node-hub/openai-proxy-server/src/message.rs

+ 7
- 1
apis/rust/node/src/event_stream/mod.rs View File

@@ -234,7 +234,13 @@ impl EventStream {
Err(err) => Event::Error(format!("{err:?}")),
}
}
NodeEvent::AllInputsClosed => Event::Stop,
NodeEvent::AllInputsClosed => {
let err = eyre!(
"received `AllInputsClosed` event, which should be handled by background task"
);
tracing::error!("{err:?}");
Event::Error(err.wrap_err("internal error").to_string())
}
},

EventItem::FatalError(err) => {


+ 4
- 7
apis/rust/node/src/event_stream/thread.rs View File

@@ -92,7 +92,6 @@ fn event_stream_loop(
clock: Arc<uhlc::HLC>,
) {
let mut tx = Some(tx);
let mut close_tx = false;
let mut pending_drop_tokens: Vec<(DropToken, flume::Receiver<()>, Instant, u64)> = Vec::new();
let mut drop_tokens = Vec::new();

@@ -136,8 +135,10 @@ fn event_stream_loop(
data: Some(data), ..
} => data.drop_token(),
NodeEvent::AllInputsClosed => {
close_tx = true;
None
// close the event stream
tx = None;
// skip this internal event
continue;
}
_ => None,
};
@@ -165,10 +166,6 @@ fn event_stream_loop(
} else {
tracing::warn!("dropping event because event `tx` was already closed: `{inner:?}`");
}

if close_tx {
tx = None;
};
}
};
if let Err(err) = result {


+ 1
- 1
binaries/daemon/src/spawn.rs View File

@@ -540,7 +540,7 @@ pub async fn spawn_node(
// If log is an output, we're sending the logs to the dataflow
if let Some(stdout_output_name) = &send_stdout_to {
// Convert logs to DataMessage
let array = message.clone().into_arrow();
let array = message.into_arrow();

let array: ArrayData = array.into();
let total_len = required_data_size(&array);


+ 3
- 3
examples/openai-server/dataflow-rust.yml View File

@@ -3,14 +3,14 @@ nodes:
build: cargo build -p dora-openai-proxy-server --release
path: ../../target/release/dora-openai-proxy-server
outputs:
- text
- chat_completion_request
inputs:
text: dora-echo/echo
completion_reply: dora-echo/echo

- id: dora-echo
build: pip install -e ../../node-hub/dora-echo
path: dora-echo
inputs:
echo: dora-openai-server/text
echo: dora-openai-server/chat_completion_request
outputs:
- echo

+ 1
- 59
examples/openai-server/openai_api_client.py View File

@@ -32,69 +32,11 @@ def test_chat_completion(user_input):
print(f"Error in chat completion: {e}")


def test_chat_completion_image_url(user_input):
"""TODO: Add docstring."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
},
},
],
}
],
)
print("Chat Completion Response:")
print(response.choices[0].message.content)
except Exception as e:
print(f"Error in chat completion: {e}")


def test_chat_completion_image_base64(user_input):
"""TODO: Add docstring."""
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
}
],
)
print("Chat Completion Response:")
print(response.choices[0].message.content)
except Exception as e:
print(f"Error in chat completion: {e}")


if __name__ == "__main__":
print("Testing API endpoints...")
# test_list_models()
test_list_models()
print("\n" + "=" * 50 + "\n")

chat_input = input("Enter a message for chat completion: ")
test_chat_completion(chat_input)

print("\n" + "=" * 50 + "\n")

test_chat_completion_image_url(chat_input)
print("\n" + "=" * 50 + "\n")
test_chat_completion_image_base64(chat_input)
print("\n" + "=" * 50 + "\n")

+ 0
- 16
examples/openai-server/qwenvl.yml View File

@@ -1,16 +0,0 @@
nodes:
- id: dora-openai-server
build: cargo build -p dora-openai-proxy-server --release
path: ../../target/release/dora-openai-proxy-server
outputs:
- text
inputs:
text: dora-qwen2.5-vl/text

- id: dora-qwen2.5-vl
build: pip install -e ../../node-hub/dora-qwen2-5-vl
path: dora-qwen2-5-vl
inputs:
text: dora-openai-server/text
outputs:
- text

+ 0
- 14
libraries/arrow-convert/src/into_impls.rs View File

@@ -57,20 +57,6 @@ impl IntoArrow for &str {
}
}

impl IntoArrow for String {
type A = StringArray;
fn into_arrow(self) -> Self::A {
std::iter::once(Some(self)).collect()
}
}

impl IntoArrow for Vec<String> {
type A = StringArray;
fn into_arrow(self) -> Self::A {
StringArray::from(self)
}
}

impl IntoArrow for () {
type A = arrow::array::NullArray;



+ 1
- 1
node-hub/dora-mistral-rs/src/main.rs View File

@@ -41,7 +41,7 @@ async fn main() -> eyre::Result<()> {
node.send_output(
mistral_output.clone(),
metadata.parameters,
output.as_str().into_arrow(),
output.into_arrow(),
)?;
}
other => eprintln!("Received input `{other}`"),


+ 78
- 327
node-hub/dora-openai-server/dora_openai_server/main.py View File

@@ -1,389 +1,140 @@
"""FastAPI server with OpenAI compatibility and DORA integration,
sending text and image data on separate DORA topics.
"""
"""TODO: Add docstring."""

import ast
import asyncio
import base64
import time # For timestamps
import uuid # For generating unique request IDs
from typing import Any, List, Literal, Optional, Union
from typing import List, Optional

import pyarrow as pa
import uvicorn
from dora import Node
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI
from pydantic import BaseModel

# --- DORA Configuration ---
DORA_RESPONSE_TIMEOUT_SECONDS = 20
DORA_TEXT_OUTPUT_TOPIC = "user_text_input"
DORA_IMAGE_OUTPUT_TOPIC = "user_image_input"
DORA_RESPONSE_INPUT_TOPIC = "chat_completion_result" # Topic FastAPI listens on

app = FastAPI(
title="DORA OpenAI-Compatible Demo Server (Separate Topics)",
description="Sends text and image data on different DORA topics and awaits a consolidated response.",
)


# --- Pydantic Models ---
class ImageUrl(BaseModel):
url: str
detail: Optional[str] = "auto"


class ContentPartText(BaseModel):
type: Literal["text"]
text: str


class ContentPartImage(BaseModel):
type: Literal["image_url"]
image_url: ImageUrl


ContentPart = Union[ContentPartText, ContentPartImage]
DORA_RESPONSE_TIMEOUT = 10
app = FastAPI()


class ChatCompletionMessage(BaseModel):
"""TODO: Add docstring."""

role: str
content: Union[str, List[ContentPart]]
content: str


class ChatCompletionRequest(BaseModel):
"""TODO: Add docstring."""

model: str
messages: List[ChatCompletionMessage]
temperature: Optional[float] = 1.0
max_tokens: Optional[int] = 100


class ChatCompletionChoiceMessage(BaseModel):
role: str
content: str


class ChatCompletionChoice(BaseModel):
index: int
message: ChatCompletionChoiceMessage
finish_reason: str
logprobs: Optional[Any] = None


class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int


class ChatCompletionResponse(BaseModel):
"""TODO: Add docstring."""

id: str
object: str = "chat.completion"
object: str
created: int
model: str
choices: List[ChatCompletionChoice]
usage: Usage
system_fingerprint: Optional[str] = None

choices: List[dict]
usage: dict

# --- DORA Node Initialization ---
# This dictionary will hold unmatched responses if we implement more robust concurrent handling.
# For now, it's a placeholder for future improvement.
# unmatched_dora_responses = {}

try:
node = Node()
print("FastAPI Server: DORA Node initialized.")
except Exception as e:
print(
f"FastAPI Server: Failed to initialize DORA Node. Running in standalone API mode. Error: {e}"
)
node = None
node = Node() # provide the name to connect to the dataflow if dynamic node


@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
internal_request_id = str(uuid.uuid4())
openai_chat_id = f"chatcmpl-{internal_request_id}"
current_timestamp = int(time.time())

print(f"FastAPI Server: Processing request_id: {internal_request_id}")

user_text_parts = []
user_image_bytes: Optional[bytes] = None
user_image_content_type: Optional[str] = None
data_sent_to_dora = False

for message in reversed(request.messages):
if message.role == "user":
if isinstance(message.content, str):
user_text_parts.append(message.content)
elif isinstance(message.content, list):
for part in message.content:
if part.type == "text":
user_text_parts.append(part.text)
elif part.type == "image_url":
if user_image_bytes: # Use only the first image
print(
f"FastAPI Server (Req {internal_request_id}): Warning - Multiple images found, using the first one."
)
continue
image_url_data = part.image_url.url
if image_url_data.startswith("data:image"):
try:
header, encoded_data = image_url_data.split(",", 1)
user_image_content_type = header.split(":")[1].split(
";"
)[0]
user_image_bytes = base64.b64decode(encoded_data)
print(
f"FastAPI Server (Req {internal_request_id}): Decoded image {user_image_content_type}, size: {len(user_image_bytes)} bytes"
)
except Exception as e:
print(
f"FastAPI Server (Req {internal_request_id}): Error decoding base64 image: {e}"
)
raise HTTPException(
status_code=400,
detail=f"Invalid base64 image data: {e}",
)
else:
print(
f"FastAPI Server (Req {internal_request_id}): Warning - Remote image URL '{image_url_data}' ignored. Only data URIs supported."
)
# Consider if you want to break after the first user message or aggregate all
# break

final_user_text = "\n".join(reversed(user_text_parts)) if user_text_parts else ""
prompt_tokens = len(final_user_text)

if node:
if final_user_text:
text_payload = {"request_id": internal_request_id, "text": final_user_text}
arrow_text_data = pa.array([text_payload])
node.send_output(DORA_TEXT_OUTPUT_TOPIC, arrow_text_data)
print(
f"FastAPI Server (Req {internal_request_id}): Sent text to DORA topic '{DORA_TEXT_OUTPUT_TOPIC}'."
)
data_sent_to_dora = True
"""TODO: Add docstring."""
data = next(
(msg.content for msg in request.messages if msg.role == "user"),
"No user message found.",
)

if user_image_bytes:
image_payload = {
"request_id": internal_request_id,
"image_bytes": user_image_bytes,
"image_content_type": user_image_content_type
or "application/octet-stream",
}
arrow_image_data = pa.array([image_payload])
node.send_output(DORA_IMAGE_OUTPUT_TOPIC, arrow_image_data)
print(
f"FastAPI Server (Req {internal_request_id}): Sent image to DORA topic '{DORA_IMAGE_OUTPUT_TOPIC}'."
)
prompt_tokens += len(user_image_bytes) # Crude image token approximation
data_sent_to_dora = True
# Convert user_message to Arrow array
# user_message_array = pa.array([user_message])
# Publish user message to dora-echo
# node.send_output("user_query", user_message_array)

response_str: str
if not data_sent_to_dora:
if node is None:
response_str = "DORA node not available. Cannot process request."
else:
response_str = "No user text or image found to send to DORA."
print(f"FastAPI Server (Req {internal_request_id}): {response_str}")
try:
data = ast.literal_eval(data)
except ValueError:
print("Passing input as string")
except SyntaxError:
print("Passing input as string")
if isinstance(data, list):
data = pa.array(data) # initialize pyarrow array
elif isinstance(data, str) or isinstance(data, int) or isinstance(data, float) or isinstance(data, dict):
data = pa.array([data])
else:
print(
f"FastAPI Server (Req {internal_request_id}): Waiting for response from DORA on topic '{DORA_RESPONSE_INPUT_TOPIC}'..."
)
response_str = f"Timeout: No response from DORA for request_id {internal_request_id} within {DORA_RESPONSE_TIMEOUT_SECONDS}s."

# WARNING: This blocking `node.next()` loop is not ideal for highly concurrent requests
# in a single FastAPI worker process, as one request might block others or consume
# a response meant for another if `request_id` matching isn't perfect or fast enough.
# A more robust solution would involve a dedicated listener task and async Futures/Queues.
start_wait_time = time.monotonic()
while time.monotonic() - start_wait_time < DORA_RESPONSE_TIMEOUT_SECONDS:
remaining_timeout = DORA_RESPONSE_TIMEOUT_SECONDS - (
time.monotonic() - start_wait_time
)
if remaining_timeout <= 0:
break

event = node.next(
timeout=min(1.0, remaining_timeout)
) # Poll with a smaller timeout

if event is None: # Timeout for this poll iteration
continue

if event["type"] == "INPUT" and event["id"] == DORA_RESPONSE_INPUT_TOPIC:
response_value_arrow = event["value"]
if response_value_arrow and len(response_value_arrow) > 0:
dora_response_data = response_value_arrow[
0
].as_py() # Expecting a dict
if isinstance(dora_response_data, dict):
resp_request_id = dora_response_data.get("request_id")
if resp_request_id == internal_request_id:
response_str = dora_response_data.get(
"response_text",
f"DORA response for {internal_request_id} missing 'response_text'.",
)
print(
f"FastAPI Server (Req {internal_request_id}): Received correlated DORA response."
)
break # Correct response received
# This response is for another request. Ideally, store it.
print(
f"FastAPI Server (Req {internal_request_id}): Received DORA response for different request_id '{resp_request_id}'. Discarding and waiting. THIS IS A CONCURRENCY ISSUE."
)
# unmatched_dora_responses[resp_request_id] = dora_response_data # Example of storing
else:
response_str = f"Unrecognized DORA response format for {internal_request_id}: {str(dora_response_data)[:100]}"
break
else:
response_str = (
f"Empty response payload from DORA for {internal_request_id}."
)
break
elif event["type"] == "ERROR":
response_str = f"Error event from DORA for {internal_request_id}: {event.get('value', event.get('error', 'Unknown DORA Error'))}"
print(response_str)
break
else: # Outer while loop timed out
print(
f"FastAPI Server (Req {internal_request_id}): Overall timeout waiting for DORA response."
)

completion_tokens = len(response_str)
total_tokens = prompt_tokens + completion_tokens
data = pa.array(data) # initialize pyarrow array
node.send_output("v1/chat/completions", data)

# Wait for response from dora-echo
while True:
event = node.next(timeout=DORA_RESPONSE_TIMEOUT)
if event["type"] == "ERROR":
response_str = "No response received. Err: " + event["value"][0].as_py()
break
if event["type"] == "INPUT" and event["id"] == "v1/chat/completions":
response = event["value"]
response_str = response[0].as_py() if response else "No response received"
break

return ChatCompletionResponse(
id=openai_chat_id,
created=current_timestamp,
id="chatcmpl-1234",
object="chat.completion",
created=1234567890,
model=request.model,
choices=[
ChatCompletionChoice(
index=0,
message=ChatCompletionChoiceMessage(
role="assistant", content=response_str
),
finish_reason="stop",
)
{
"index": 0,
"message": {"role": "assistant", "content": response_str},
"finish_reason": "stop",
},
],
usage=Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
),
usage={
"prompt_tokens": len(data),
"completion_tokens": len(response_str),
"total_tokens": len(data) + len(response_str),
},
)


@app.get("/v1/models")
async def list_models():
"""TODO: Add docstring."""
return {
"object": "list",
"data": [
{
"id": "dora-multi-stream-vision",
"id": "gpt-3.5-turbo",
"object": "model",
"created": int(time.time()),
"owned_by": "dora-ai",
"permission": [],
"root": "dora-multi-stream-vision",
"parent": None,
"created": 1677610602,
"owned_by": "openai",
},
],
}


async def run_fastapi_server_task():
async def run_fastapi():
"""TODO: Add docstring."""
config = uvicorn.Config(app, host="0.0.0.0", port=8000, log_level="info")
server = uvicorn.Server(config)
print("FastAPI Server: Uvicorn server starting.")
await server.serve()
print("FastAPI Server: Uvicorn server stopped.")


async def run_dora_main_loop_task():
if not node:
print("FastAPI Server: DORA node not initialized, DORA main loop skipped.")
return
print("FastAPI Server: DORA main loop listener started (for STOP event).")
try:
while True:
# This loop is primarily for the main "STOP" event for the FastAPI node itself.
# Individual request/response cycles are handled within the endpoint.
event = node.next(timeout=1.0) # Check for STOP periodically
if event is None:
await asyncio.sleep(0.01) # Yield control if no event
continue
if event["type"] == "STOP":
print(
"FastAPI Server: DORA STOP event received. Requesting server shutdown."
)
# Attempt to gracefully shut down Uvicorn
# This is tricky; uvicorn's server.shutdown() or server.should_exit might be better
# For simplicity, we cancel the server task.
for task in asyncio.all_tasks():
# Identify the server task more reliably if possible
if (
task.get_coro().__name__ == "serve"
and hasattr(task.get_coro(), "cr_frame")
and isinstance(
task.get_coro().cr_frame.f_locals.get("self"),
uvicorn.Server,
)
):
task.cancel()
print(
"FastAPI Server: Uvicorn server task cancellation requested."
)
break
# Handle other unexpected general inputs/errors for the FastAPI node if necessary
# elif event["type"] == "INPUT":
# print(f"FastAPI Server (DORA Main Loop): Unexpected DORA input on ID '{event['id']}'")

except asyncio.CancelledError:
print("FastAPI Server: DORA main loop task cancelled.")
except Exception as e:
print(f"FastAPI Server: Error in DORA main loop: {e}")
finally:
print("FastAPI Server: DORA main loop listener finished.")


async def main_async_runner():
server_task = asyncio.create_task(run_fastapi_server_task())

# Only run the DORA main loop if the node was initialized.
# This loop is mainly for the STOP event.
dora_listener_task = None
if node:
dora_listener_task = asyncio.create_task(run_dora_main_loop_task())
tasks_to_wait_for = [server_task, dora_listener_task]
else:
tasks_to_wait_for = [server_task]

done, pending = await asyncio.wait(
tasks_to_wait_for,
return_when=asyncio.FIRST_COMPLETED,
)

for task in pending:
print(f"FastAPI Server: Cancelling pending task: {task.get_name()}")
task.cancel()

if pending:
await asyncio.gather(*pending, return_exceptions=True)
print("FastAPI Server: Application shutdown complete.")
server = asyncio.gather(server.serve())
while True:
await asyncio.sleep(1)
event = node.next(0.001)
if event["type"] == "STOP":
break


def main():
print("FastAPI Server: Starting application...")
try:
asyncio.run(main_async_runner())
except KeyboardInterrupt:
print("FastAPI Server: Keyboard interrupt received. Shutting down.")
finally:
print("FastAPI Server: Exited main function.")
"""TODO: Add docstring."""
asyncio.run(run_fastapi())


if __name__ == "__main__":
main()
asyncio.run(run_fastapi())

+ 11
- 9
node-hub/dora-openai-server/pyproject.toml View File

@@ -2,8 +2,8 @@
name = "dora-openai-server"
version = "0.3.11"
authors = [
{ name = "Haixuan Xavier Tao", email = "tao.xavier@outlook.com" },
{ name = "Enzo Le Van", email = "dev@enzo-le-van.fr" },
{ name = "Haixuan Xavier Tao", email = "tao.xavier@outlook.com" },
{ name = "Enzo Le Van", email = "dev@enzo-le-van.fr" },
]
description = "Dora OpenAI API Server"
license = { text = "MIT" }
@@ -11,13 +11,14 @@ readme = "README.md"
requires-python = ">=3.8"

dependencies = [
"dora-rs >= 0.3.9",
"numpy < 2.0.0",
"pyarrow >= 5.0.0",
"fastapi >= 0.115",
"asyncio >= 3.4",
"uvicorn >= 0.31",
"pydantic >= 2.9",
"dora-rs >= 0.3.9",
"numpy < 2.0.0",
"pyarrow >= 5.0.0",

"fastapi >= 0.115",
"asyncio >= 3.4",
"uvicorn >= 0.31",
"pydantic >= 2.9",
]

[dependency-groups]
@@ -28,6 +29,7 @@ dora-openai-server = "dora_openai_server.main:main"

[tool.ruff.lint]
extend-select = [
"D", # pydocstyle
"UP", # Ruff's UP rule
"PERF", # Ruff's PERF rule
"RET", # Ruff's RET rule


+ 31
- 112
node-hub/dora-qwen2-5-vl/dora_qwen2_5_vl/main.py View File

@@ -62,118 +62,29 @@ if ADAPTER_PATH != "":
processor = AutoProcessor.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)


def generate(
frames: dict, texts: list[str], history, past_key_values=None, image_id=None
):
def generate(frames: dict, question, history, past_key_values=None, image_id=None):
"""Generate the response to the question given the image using Qwen2 model."""
if image_id is not None:
images = [frames[image_id]]
else:
images = list(frames.values())

messages = []

for text in texts:
if text.startswith("<|system|>\n"):
messages.append(
{
"role": "system",
"content": [
{"type": "text", "text": text.replace("<|system|>\n", "")},
],
}
)
elif text.startswith("<|assistant|>\n"):
messages.append(
{
"role": "assistant",
"content": [
{"type": "text", "text": text.replace("<|assistant|>\n", "")},
],
}
)
elif text.startswith("<|tool|>\n"):
messages.append(
{
"role": "tool",
"content": [
{"type": "text", "text": text.replace("<|tool|>\n", "")},
],
}
)
elif text.startswith("<|user|>\n<|im_start|>\n"):
messages.append(
messages = [
{
"role": "user",
"content": [
{
"role": "user",
"content": [
{
"type": "text",
"text": text.replace("<|user|>\n<|im_start|>\n", ""),
},
],
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
)
elif text.startswith("<|user|>\n<|vision_start|>\n"):
# Handle the case where the text starts with <|user|>\n<|vision_start|>
image_url = text.replace("<|user|>\n<|vision_start|>\n", "")

# If the last message was from the user, append the image URL to it
if messages[-1]["role"] == "user":
messages[-1]["content"].append(
{
"type": "image",
"image": image_url,
}
)
else:
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": image_url,
},
],
}
)
else:
messages.append(
{
"role": "user",
"content": [
{"type": "text", "text": text},
],
}
)

# If the last message was from the user, append the image URL to it
if messages[-1]["role"] == "user":
messages[-1]["content"] += [
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
for image in images
]
else:
messages.append(
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"resized_height": image.size[1] * IMAGE_RESIZE_RATIO,
"resized_width": image.size[0] * IMAGE_RESIZE_RATIO,
}
for image in images
],
}
)

for image in images
]
+ [
{"type": "text", "text": question},
],
},
]
tmp_history = history + messages
# Preparation for inference
text = processor.apply_chat_template(
@@ -209,13 +120,19 @@ def generate(
clean_up_tokenization_spaces=False,
)
if HISTORY:
history = tmp_history + [
history += [
{
"role": "user",
"content": [
{"type": "text", "text": question},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": output_text[0]},
],
}
},
]

return output_text[0], history, past_key_values
@@ -290,22 +207,24 @@ def main():

elif "text" in event_id:
if len(event["value"]) > 0:
texts = event["value"].to_pylist()
text = event["value"][0].as_py()
image_id = event["metadata"].get("image_id", None)
else:
texts = cached_text
words = texts[-1].split()
text = cached_text
words = text.split()
if len(ACTIVATION_WORDS) > 0 and all(
word not in ACTIVATION_WORDS for word in words
):
continue

cached_text = texts
cached_text = text

if len(frames.keys()) == 0:
continue
# set the max number of tiles in `max_num`
response, history, past_key_values = generate(
frames,
texts,
text,
history,
past_key_values,
image_id,


+ 69
- 55
node-hub/openai-proxy-server/src/main.rs View File

@@ -1,10 +1,4 @@
use dora_node_api::{
self,
arrow::array::{AsArray, StringArray},
dora_core::config::DataId,
merged::MergeExternalSend,
DoraNode, Event,
};
use dora_node_api::{self, dora_core::config::DataId, merged::MergeExternalSend, DoraNode, Event};

use eyre::{Context, ContextCompat};
use futures::{
@@ -20,7 +14,7 @@ use hyper::{
};
use message::{
ChatCompletionObject, ChatCompletionObjectChoice, ChatCompletionObjectMessage,
ChatCompletionRequest, Usage,
ChatCompletionRequest, ChatCompletionRequestMessage, Usage,
};
use std::{
collections::VecDeque,
@@ -77,7 +71,7 @@ async fn main() -> eyre::Result<()> {
let merged = events.merge_external_send(server_events);
let events = futures::executor::block_on_stream(merged);

let output_id = DataId::from("text".to_owned());
let output_id = DataId::from("chat_completion_request".to_owned());
let mut reply_channels = VecDeque::new();

for event in events {
@@ -88,15 +82,45 @@ async fn main() -> eyre::Result<()> {
break;
}
ServerEvent::ChatCompletionRequest { request, reply } => {
let texts = request.to_texts();
node.send_output(
output_id.clone(),
Default::default(),
StringArray::from(texts),
)
.context("failed to send dora output")?;

reply_channels.push_back((reply, 0 as u64, request.model));
let message = request
.messages
.into_iter()
.find_map(|m| match m {
ChatCompletionRequestMessage::User(message) => Some(message),
_ => None,
})
.context("no user message found");
match message {
Ok(message) => match message.content() {
message::ChatCompletionUserMessageContent::Text(content) => {
node.send_output_bytes(
output_id.clone(),
Default::default(),
content.len(),
content.as_bytes(),
)
.context("failed to send dora output")?;
reply_channels.push_back((
reply,
content.as_bytes().len() as u64,
request.model,
));
}
message::ChatCompletionUserMessageContent::Parts(_) => {
if reply
.send(Err(eyre::eyre!("unsupported message content")))
.is_err()
{
tracing::warn!("failed to send chat completion reply because channel closed early");
};
}
},
Err(err) => {
if reply.send(Err(err)).is_err() {
tracing::warn!("failed to send chat completion reply error because channel closed early");
}
}
}
}
},
dora_node_api::merged::MergedEvent::Dora(event) => match event {
@@ -106,42 +130,35 @@ async fn main() -> eyre::Result<()> {
metadata: _,
} => {
match id.as_str() {
"text" => {
"completion_reply" => {
let (reply_channel, prompt_tokens, model) =
reply_channels.pop_front().context("no reply channel")?;
let data = data.as_string::<i32>();
let string = data.iter().fold("".to_string(), |mut acc, s| {
if let Some(s) = s {
acc.push_str("\n");
acc.push_str(s);
}
acc
});

let data = ChatCompletionObject {
id: format!("completion-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: chrono::Utc::now().timestamp() as u64,
model: model.unwrap_or_default(),
choices: vec![ChatCompletionObjectChoice {
index: 0,
message: ChatCompletionObjectMessage {
role: message::ChatCompletionRole::Assistant,
content: Some(string.to_string()),
tool_calls: Vec::new(),
function_call: None,
let data = TryFrom::try_from(&data)
.with_context(|| format!("invalid reply data: {data:?}"))
.map(|s: &[u8]| ChatCompletionObject {
id: format!("completion-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: chrono::Utc::now().timestamp() as u64,
model: model.unwrap_or_default(),
choices: vec![ChatCompletionObjectChoice {
index: 0,
message: ChatCompletionObjectMessage {
role: message::ChatCompletionRole::Assistant,
content: Some(String::from_utf8_lossy(s).to_string()),
tool_calls: Vec::new(),
function_call: None,
},
finish_reason: message::FinishReason::stop,
logprobs: None,
}],
usage: Usage {
prompt_tokens,
completion_tokens: s.len() as u64,
total_tokens: prompt_tokens + s.len() as u64,
},
finish_reason: message::FinishReason::stop,
logprobs: None,
}],
usage: Usage {
prompt_tokens,
completion_tokens: string.len() as u64,
total_tokens: prompt_tokens + string.len() as u64,
},
};

if reply_channel.send(Ok(data)).is_err() {
});

if reply_channel.send(data).is_err() {
tracing::warn!("failed to send chat completion reply because channel closed early");
}
}
@@ -151,11 +168,8 @@ async fn main() -> eyre::Result<()> {
Event::Stop => {
break;
}
Event::InputClosed { id, .. } => {
info!("Input channel closed for id: {}", id);
}
event => {
eyre::bail!("unexpected event: {:#?}", event)
println!("Event: {event:#?}")
}
},
}


+ 0
- 44
node-hub/openai-proxy-server/src/message.rs View File

@@ -230,15 +230,6 @@ impl<'de> Deserialize<'de> for ChatCompletionRequest {
}
}

impl ChatCompletionRequest {
pub fn to_texts(&self) -> Vec<String> {
self.messages
.iter()
.flat_map(|message| message.to_texts())
.collect()
}
}

/// Message for comprising the conversation.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq)]
#[serde(tag = "role", rename_all = "lowercase")]
@@ -317,22 +308,6 @@ impl ChatCompletionRequestMessage {
ChatCompletionRequestMessage::Tool(_) => None,
}
}

/// The contents of the message.
pub fn to_texts(&self) -> Vec<String> {
match self {
ChatCompletionRequestMessage::System(message) => {
vec![String::from("<|system|>\n") + &message.content]
}
ChatCompletionRequestMessage::User(message) => message.content.to_texts(),
ChatCompletionRequestMessage::Assistant(message) => {
vec![String::from("<|assistant|>\n") + &message.content.clone().unwrap_or_default()]
}
ChatCompletionRequestMessage::Tool(message) => {
vec![String::from("<|tool|>\n") + &message.content.clone()]
}
}
}
}

/// Sampling methods used for chat completion requests.
@@ -612,25 +587,6 @@ impl ChatCompletionUserMessageContent {
ChatCompletionUserMessageContent::Parts(_) => "parts",
}
}

pub fn to_texts(&self) -> Vec<String> {
match self {
ChatCompletionUserMessageContent::Text(text) => {
vec![String::from("user: ") + &text.clone()]
}
ChatCompletionUserMessageContent::Parts(parts) => parts
.iter()
.map(|part| match part {
ContentPart::Text(text_part) => {
String::from("<|user|>\n<|im_start|>\n") + &text_part.text.clone()
}
ContentPart::Image(image) => {
String::from("<|user|>\n<|vision_start|>\n") + &image.image().url.clone()
}
})
.collect(),
}
}
}

/// Define the content part of a user message.


Loading…
Cancel
Save