import os import joblib import numpy as np from sklearn import svm from learnware.market import EasyMarket, BaseUserInfo from learnware.market import database_ops from learnware.learnware import Learnware import learnware.specification as specification from learnware.utils import get_module_by_module_path curr_root = os.path.dirname(os.path.abspath(__file__)) def prepare_learnware(learnware_num=10): for i in range(learnware_num): dir_path = os.path.join(curr_root, "learnware_pool", "svm_%d" % (i)) os.makedirs(dir_path, exist_ok=True) print("Preparing Learnware: %d" % (i)) data_X = np.random.randn(5000, 20) * i data_y = np.random.randn(5000) data_y = np.where(data_y > 0, 1, 0) clf = svm.SVC(kernel="linear") clf.fit(data_X, data_y) joblib.dump(clf, os.path.join(dir_path, "svm.pkl")) spec = specification.utils.generate_rkme_spec(X=data_X, gamma=0.1, cuda_idx=0) spec.save(os.path.join(dir_path, "svm.json")) init_file = os.path.join(dir_path, "__init__.py") os.system(f"cp example_init.py {init_file}") yaml_file = os.path.join(dir_path, "learnware.yaml") os.system(f"cp example.yaml {yaml_file}") zip_file = dir_path + ".zip" os.system(f"zip -q -r -j {zip_file} {dir_path}") os.system(f"rm -r {dir_path}") def get_zip_path_list(): root_path = os.path.join(curr_root, "learnware_pool") zip_path_list = [os.path.join(root_path, path) for path in os.listdir(root_path)] return zip_path_list def test_market(): database_ops.clear_learnware_table() easy_market = EasyMarket() print("Total Item:", len(easy_market)) zip_path_list = get_zip_path_list() # the path list for learnware .zip for idx, zip_path in enumerate(zip_path_list): print(zip_path) easy_market.add_learnware( zip_path, {"name": "learnware_%d" % (idx), "desc": "test_learnware_number_%d" % (idx)} ) print("Total Item:", len(easy_market)) curr_inds = easy_market._get_ids() print("Available ids:", curr_inds) easy_market.delete_learnware(curr_inds[3]) easy_market.delete_learnware(curr_inds[2]) curr_inds = easy_market._get_ids() print("Available ids:", curr_inds) def test_search_sementics(): easy_market = EasyMarket() print("Total Item:", len(easy_market)) root_path = "./learnware_pool" os.makedirs(root_path, exist_ok=True) test_learnware_num = 3 prepare_learnware(test_learnware_num) semantic_specs = [ { "Data": {"Values": ["Tabular"], "Type": "Class"}, "Task": { "Values": [ "Classification", ], "Type": "Class", }, "Device": {"Values": ["GPU"], "Type": "Tag"}, "Scenario": {"Values": ["Nature"], "Type": "Tag"}, "Description": {"Values": "", "Type": "Description"}, }, { "Data": {"Values": ["Tabular"], "Type": "Class"}, "Task": { "Values": [ "Classification", ], "Type": "Class", }, "Device": {"Values": ["GPU"], "Type": "Tag"}, "Scenario": {"Values": ["Business", "Nature"], "Type": "Tag"}, "Description": {"Values": "", "Type": "Description"}, }, { "Data": {"Values": ["Tabular"], "Type": "Class"}, "Task": { "Values": [ "Classification", ], "Type": "Class", }, "Device": {"Values": ["GPU"], "Type": "Tag"}, "Scenario": {"Values": ["Business"], "Type": "Tag"}, "Description": {"Values": "", "Type": "Description"}, }, ] user_senmantic = { "Data": {"Values": ["Tabular"], "Type": "Class"}, "Task": { "Values": [ "Classification", ], "Type": "Class", }, "Device": {"Values": ["GPU"], "Type": "Tag"}, "Scenario": {"Values": ["Business"], "Type": "Tag"}, "Description": {"Values": "learnware_1", "Type": "Description"}, } for i in range(test_learnware_num): dir_path = f"./learnware_pool/svm{i}" model_path = os.path.join(dir_path, "__init__.py") stat_spec_path = os.path.join(dir_path, "spec.json") easy_market.add_learnware("learnware_%d" % (i), model_path, stat_spec_path, semantic_specs[i]) print("Total Item:", len(easy_market)) curr_inds = easy_market._get_ids() print("Available ids:", curr_inds) user_info = BaseUserInfo(id="user", semantic_spec=user_senmantic, stat_info=dict()) learnware_list = easy_market.search_learnware(user_info) print(learnware_list) def test_stat_search(): easy_market = EasyMarket() print("Total Item:", len(easy_market)) test_folder = "./test_stat" zip_path_list = get_zip_path_list() for idx, zip_path in enumerate(zip_path_list): unzip_dir = os.path.join(test_folder, f"{idx}") os.makedirs(unzip_dir, exist_ok=True) os.system(f"unzip -q {zip_path} -d {unzip_dir}") user_spec = specification.rkme.RKMEStatSpecification() user_spec.load(os.path.join(unzip_dir, "svm.json")) user_info = BaseUserInfo( id="user_0", semantic_spec={"desc": "test_user_number_0"}, stat_info={"RKME": user_spec} ) sorted_dist_list, single_learnware_list, mixture_learnware_list = easy_market.search_learnware(user_info) print(f"search result of user{idx}:") for dist, learnware in zip(sorted_dist_list, single_learnware_list): print(f"dist: {dist}, learnware_id: {learnware.id}, learnware_name: {learnware.name}") mixture_id = " ".join([learnware.id for learnware in mixture_learnware_list]) print(f"mixture_learnware: {mixture_id}\n") os.system(f"rm -r {test_folder}") if __name__ == "__main__": learnware_num = 5 prepare_learnware(learnware_num) test_market() test_stat_search()