|
|
|
@@ -167,13 +167,11 @@ def test_search(gamma=0.1, load_market=True): |
|
|
|
acc_list.append(acc) |
|
|
|
logger.info("search rank: %d, score: %.3f, learnware_id: %s, acc: %.3f" % (idx, score, learnware.id, acc)) |
|
|
|
# test reuse |
|
|
|
""" |
|
|
|
reuse_baseline = JobSelectorReuser(learnware_list=mixture_learnware_list) |
|
|
|
reuse_predict = reuse_baseline.predict(user_data=user_data) |
|
|
|
reuse_score = eval_prediction(reuse_predict, user_label) |
|
|
|
job_selector_score_list.append(reuse_score) |
|
|
|
print(f"mixture reuse loss: {reuse_score}\n") |
|
|
|
""" |
|
|
|
|
|
|
|
reuse_ensemble = EnsembleReuser(learnware_list=mixture_learnware_list, mode="vote") |
|
|
|
ensemble_predict_y = reuse_ensemble.predict(user_data=user_data) |
|
|
|
@@ -188,7 +186,7 @@ def test_search(gamma=0.1, load_market=True): |
|
|
|
% (np.mean(select_list), np.std(select_list), np.mean(avg_list), np.std(avg_list)) |
|
|
|
) |
|
|
|
logger.info("Average performance improvement: %.3f" % (np.mean(improve_list))) |
|
|
|
# logger.info("Average Job Selector Reuse Performance: %.3f +/- %.3f"%(np.mean(job_selector_score_list), np.std(job_selector_score_list))) |
|
|
|
logger.info("Average Job Selector Reuse Performance: %.3f +/- %.3f"%(np.mean(job_selector_score_list), np.std(job_selector_score_list))) |
|
|
|
logger.info( |
|
|
|
"Ensemble Reuse Performance: %.3f +/- %.3f" % (np.mean(ensemble_score_list), np.std(ensemble_score_list)) |
|
|
|
) |
|
|
|
|