|
- /***************************************************************************
- Copyright (c) 2013, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
-
- #include "common.h"
- #if !defined(DOUBLE)
- #define VSETVL(n) RISCV_RVV(vsetvl_e32m8)(n)
- #define VSETVL_MAX_M1 RISCV_RVV(vsetvlmax_e32m1)
- #define FLOAT_V_T vfloat32m8_t
- #define FLOAT_V_T_M1 vfloat32m1_t
- #define VLEV_FLOAT RISCV_RVV(vle32_v_f32m8)
- #define VLSEV_FLOAT RISCV_RVV(vlse32_v_f32m8)
- #ifdef RISCV_0p10_INTRINSICS
- #define VFREDSUM_FLOAT(va, vb, gvl) vfredusum_vs_f32m8_f32m1(v_res, va, vb, gvl)
- #else
- #define VFREDSUM_FLOAT RISCV_RVV(vfredusum_vs_f32m8_f32m1)
- #endif
- #define VFMULVV_FLOAT RISCV_RVV(vfmul_vv_f32m8)
- #define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f32m8)
- #define VFMVVF_FLOAT_M1 RISCV_RVV(vfmv_v_f_f32m1)
- #define xint_t int
- #else
- #define VSETVL(n) RISCV_RVV(vsetvl_e64m8)(n)
- #define VSETVL_MAX_M1 RISCV_RVV(vsetvlmax_e64m1)
- #define FLOAT_V_T vfloat64m8_t
- #define FLOAT_V_T_M1 vfloat64m1_t
- #define VLEV_FLOAT RISCV_RVV(vle64_v_f64m8)
- #define VLSEV_FLOAT RISCV_RVV(vlse64_v_f64m8)
- #ifdef RISCV_0p10_INTRINSICS
- #define VFREDSUM_FLOAT(va, vb, gvl) vfredusum_vs_f64m8_f64m1(v_res, va, vb, gvl)
- #else
- #define VFREDSUM_FLOAT RISCV_RVV(vfredusum_vs_f64m8_f64m1)
- #endif
- #define VFMULVV_FLOAT RISCV_RVV(vfmul_vv_f64m8)
- #define VFMVVF_FLOAT RISCV_RVV(vfmv_v_f_f64m8)
- #define VFMVVF_FLOAT_M1 RISCV_RVV(vfmv_v_f_f64m1)
- #define xint_t long long
- #endif
-
- int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
- {
- BLASLONG i = 0, j = 0, k = 0;
- BLASLONG ix = 0, iy = 0;
- FLOAT *a_ptr = a;
- FLOAT temp;
-
- FLOAT_V_T va, vr, vx;
- unsigned int gvl = 0;
- FLOAT_V_T_M1 v_res;
- size_t vlmax = VSETVL_MAX_M1();
-
- #ifndef RISCV_0p10_INTRINSICS
- FLOAT_V_T va0, va1, va2, va3, vr0, vr1, vr2, vr3;
- FLOAT_V_T_M1 vec0, vec1, vec2, vec3;
- FLOAT *a_ptrs[4], *y_ptrs[4];
- #endif
-
- if(inc_x == 1){
- #ifndef RISCV_0p10_INTRINSICS
- BLASLONG anr = n - n % 4;
- for (; i < anr; i += 4) {
- gvl = VSETVL(m);
- j = 0;
- for (int l = 0; l < 4; l++) {
- a_ptrs[l] = a + (i + l) * lda;
- y_ptrs[l] = y + (i + l) * inc_y;
- }
- vec0 = VFMVVF_FLOAT_M1(0.0, vlmax);
- vec1 = VFMVVF_FLOAT_M1(0.0, vlmax);
- vec2 = VFMVVF_FLOAT_M1(0.0, vlmax);
- vec3 = VFMVVF_FLOAT_M1(0.0, vlmax);
- vr0 = VFMVVF_FLOAT(0.0, gvl);
- vr1 = VFMVVF_FLOAT(0.0, gvl);
- vr2 = VFMVVF_FLOAT(0.0, gvl);
- vr3 = VFMVVF_FLOAT(0.0, gvl);
- for (k = 0; k < m / gvl; k++) {
- va0 = VLEV_FLOAT(a_ptrs[0] + j, gvl);
- va1 = VLEV_FLOAT(a_ptrs[1] + j, gvl);
- va2 = VLEV_FLOAT(a_ptrs[2] + j, gvl);
- va3 = VLEV_FLOAT(a_ptrs[3] + j, gvl);
-
- vx = VLEV_FLOAT(x + j, gvl);
- vr0 = VFMULVV_FLOAT(va0, vx, gvl);
- vr1 = VFMULVV_FLOAT(va1, vx, gvl);
- vr2 = VFMULVV_FLOAT(va2, vx, gvl);
- vr3 = VFMULVV_FLOAT(va3, vx, gvl);
- // Floating-point addition does not satisfy the associative law, that is, (a + b) + c ≠ a + (b + c),
- // so piecewise multiplication and reduction must be performed inside the loop body.
- vec0 = VFREDSUM_FLOAT(vr0, vec0, gvl);
- vec1 = VFREDSUM_FLOAT(vr1, vec1, gvl);
- vec2 = VFREDSUM_FLOAT(vr2, vec2, gvl);
- vec3 = VFREDSUM_FLOAT(vr3, vec3, gvl);
- j += gvl;
- }
- if (j < m) {
- gvl = VSETVL(m - j);
- va0 = VLEV_FLOAT(a_ptrs[0] + j, gvl);
- va1 = VLEV_FLOAT(a_ptrs[1] + j, gvl);
- va2 = VLEV_FLOAT(a_ptrs[2] + j, gvl);
- va3 = VLEV_FLOAT(a_ptrs[3] + j, gvl);
-
- vx = VLEV_FLOAT(x + j, gvl);
- vr0 = VFMULVV_FLOAT(va0, vx, gvl);
- vr1 = VFMULVV_FLOAT(va1, vx, gvl);
- vr2 = VFMULVV_FLOAT(va2, vx, gvl);
- vr3 = VFMULVV_FLOAT(va3, vx, gvl);
- vec0 = VFREDSUM_FLOAT(vr0, vec0, gvl);
- vec1 = VFREDSUM_FLOAT(vr1, vec1, gvl);
- vec2 = VFREDSUM_FLOAT(vr2, vec2, gvl);
- vec3 = VFREDSUM_FLOAT(vr3, vec3, gvl);
- }
- *y_ptrs[0] += alpha * (FLOAT)(EXTRACT_FLOAT(vec0));
- *y_ptrs[1] += alpha * (FLOAT)(EXTRACT_FLOAT(vec1));
- *y_ptrs[2] += alpha * (FLOAT)(EXTRACT_FLOAT(vec2));
- *y_ptrs[3] += alpha * (FLOAT)(EXTRACT_FLOAT(vec3));
- }
- // deal with the tail
- for (; i < n; i++) {
- v_res = VFMVVF_FLOAT_M1(0, vlmax);
- gvl = VSETVL(m);
- j = 0;
- a_ptrs[0] = a + i * lda;
- y_ptrs[0] = y + i * inc_y;
- vr0 = VFMVVF_FLOAT(0, gvl);
- for (k = 0; k < m / gvl; k++) {
- va0 = VLEV_FLOAT(a_ptrs[0] + j, gvl);
- vx = VLEV_FLOAT(x + j, gvl);
- vr0 = VFMULVV_FLOAT(va0, vx, gvl);
- v_res = VFREDSUM_FLOAT(vr0, v_res, gvl);
- j += gvl;
- }
- if (j < m) {
- gvl = VSETVL(m - j);
- va0 = VLEV_FLOAT(a_ptrs[0] + j, gvl);
- vx = VLEV_FLOAT(x + j, gvl);
- vr0 = VFMULVV_FLOAT(va0, vx, gvl);
- v_res = VFREDSUM_FLOAT(vr0, v_res, gvl);
- }
- *y_ptrs[0] += alpha * (FLOAT)(EXTRACT_FLOAT(v_res));
- }
- #else
- for(i = 0; i < n; i++){
- v_res = VFMVVF_FLOAT_M1(0, 1);
- gvl = VSETVL(m);
- j = 0;
- vr = VFMVVF_FLOAT(0, gvl);
- for(k = 0; k < m/gvl; k++){
- va = VLEV_FLOAT(&a_ptr[j], gvl);
- vx = VLEV_FLOAT(&x[j], gvl);
- vr = VFMULVV_FLOAT(va, vx, gvl); // could vfmacc here and reduce outside loop
- v_res = VFREDSUM_FLOAT(vr, v_res, gvl); // but that reordering diverges far enough from scalar path to make tests fail
- j += gvl;
- }
- if(j < m){
- gvl = VSETVL(m-j);
- va = VLEV_FLOAT(&a_ptr[j], gvl);
- vx = VLEV_FLOAT(&x[j], gvl);
- vr = VFMULVV_FLOAT(va, vx, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_res, gvl);
- }
- temp = (FLOAT)EXTRACT_FLOAT(v_res);
- y[iy] += alpha * temp;
-
-
- iy += inc_y;
- a_ptr += lda;
- }
- #endif
- } else {
- BLASLONG stride_x = inc_x * sizeof(FLOAT);
- for(i = 0; i < n; i++){
- v_res = VFMVVF_FLOAT_M1(0, 1);
- gvl = VSETVL(m);
- j = 0;
- ix = 0;
- vr = VFMVVF_FLOAT(0, gvl);
- for(k = 0; k < m/gvl; k++){
- va = VLEV_FLOAT(&a_ptr[j], gvl);
- vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vr = VFMULVV_FLOAT(va, vx, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_res, gvl);
- j += gvl;
- ix += inc_x * gvl;
- }
- if(j < m){
- gvl = VSETVL(m-j);
- va = VLEV_FLOAT(&a_ptr[j], gvl);
- vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vr = VFMULVV_FLOAT(va, vx, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_res, gvl);
- }
- temp = (FLOAT)EXTRACT_FLOAT(v_res);
- y[iy] += alpha * temp;
-
-
- iy += inc_y;
- a_ptr += lda;
- }
- }
-
- return (0);
- }
|