Fix code and documentation for ?SORBDB?/?CUNBDB? (Reference-LAPACK PRs 647+697+702)tags/v0.3.22^2
| @@ -122,14 +122,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is COMPLEX array, dimension (P) | |||
| *> TAUP1 is COMPLEX array, dimension (P-1) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is COMPLEX array, dimension (M-P) | |||
| *> TAUP2 is COMPLEX array, dimension (Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -124,14 +124,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is COMPLEX array, dimension (P) | |||
| *> TAUP1 is COMPLEX array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is COMPLEX array, dimension (M-P) | |||
| *> TAUP2 is COMPLEX array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -41,10 +41,16 @@ | |||
| *> with respect to the columns of | |||
| *> Q = [ Q1 ] . | |||
| *> [ Q2 ] | |||
| *> The columns of Q must be orthonormal. | |||
| *> The Euclidean norm of X must be one and the columns of Q must be | |||
| *> orthonormal. The orthogonalized vector will be zero if and only if it | |||
| *> lies entirely in the range of Q. | |||
| *> | |||
| *> If the projection is zero according to Kahan's "twice is enough" | |||
| *> criterion, then the zero vector is returned. | |||
| *> The projection is computed with at most two iterations of the | |||
| *> classical Gram-Schmidt algorithm, see | |||
| *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error | |||
| *> analysis of the Gram-Schmidt algorithm with reorthogonalization." | |||
| *> 2002. CERFACS Technical Report No. TR/PA/02/33. URL: | |||
| *> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf | |||
| *> | |||
| *>\endverbatim | |||
| * | |||
| @@ -167,16 +173,19 @@ | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| REAL ALPHASQ, REALONE, REALZERO | |||
| PARAMETER ( ALPHASQ = 0.01E0, REALONE = 1.0E0, | |||
| REAL ALPHA, REALONE, REALZERO | |||
| PARAMETER ( ALPHA = 0.01E0, REALONE = 1.0E0, | |||
| $ REALZERO = 0.0E0 ) | |||
| COMPLEX NEGONE, ONE, ZERO | |||
| PARAMETER ( NEGONE = (-1.0E0,0.0E0), ONE = (1.0E0,0.0E0), | |||
| $ ZERO = (0.0E0,0.0E0) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| INTEGER I | |||
| REAL NORMSQ1, NORMSQ2, SCL1, SCL2, SSQ1, SSQ2 | |||
| INTEGER I, IX | |||
| REAL EPS, NORM, NORM_NEW, SCL, SSQ | |||
| * .. | |||
| * .. External Functions .. | |||
| REAL SLAMCH | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL CGEMV, CLASSQ, XERBLA | |||
| @@ -211,17 +220,17 @@ | |||
| CALL XERBLA( 'CUNBDB6', -INFO ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| EPS = SLAMCH( 'Precision' ) | |||
| * | |||
| * First, project X onto the orthogonal complement of Q's column | |||
| * space | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL CLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL CLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ1 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| * Christoph Conrads: In debugging mode the norm should be computed | |||
| * and an assertion added comparing the norm with one. Alas, Fortran | |||
| * never made it into 1989 when assert() was introduced into the C | |||
| * programming language. | |||
| NORM = REALONE | |||
| * | |||
| IF( M1 .EQ. 0 ) THEN | |||
| DO I = 1, N | |||
| @@ -239,27 +248,31 @@ | |||
| CALL CGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL CLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL CLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL CLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL CLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If projection is sufficiently large in norm, then stop. | |||
| * If projection is zero, then stop. | |||
| * Otherwise, project again. | |||
| * | |||
| IF( NORMSQ2 .GE. ALPHASQ*NORMSQ1 ) THEN | |||
| IF( NORM_NEW .GE. ALPHA * NORM ) THEN | |||
| RETURN | |||
| END IF | |||
| * | |||
| IF( NORMSQ2 .EQ. ZERO ) THEN | |||
| IF( NORM_NEW .LE. N * EPS * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1( IX ) = ZERO | |||
| END DO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2( IX ) = ZERO | |||
| END DO | |||
| RETURN | |||
| END IF | |||
| * | |||
| NORMSQ1 = NORMSQ2 | |||
| NORM = NORM_NEW | |||
| * | |||
| DO I = 1, N | |||
| WORK(I) = ZERO | |||
| @@ -281,24 +294,22 @@ | |||
| CALL CGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL CLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL CLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL CLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL CLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If second projection is sufficiently large in norm, then do | |||
| * nothing more. Alternatively, if it shrunk significantly, then | |||
| * truncate it to zero. | |||
| * | |||
| IF( NORMSQ2 .LT. ALPHASQ*NORMSQ1 ) THEN | |||
| DO I = 1, M1 | |||
| X1(I) = ZERO | |||
| IF( NORM_NEW .LT. ALPHA * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1(IX) = ZERO | |||
| END DO | |||
| DO I = 1, M2 | |||
| X2(I) = ZERO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2(IX) = ZERO | |||
| END DO | |||
| END IF | |||
| * | |||
| @@ -307,4 +318,3 @@ | |||
| * End of CUNBDB6 | |||
| * | |||
| END | |||
| @@ -122,14 +122,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is DOUBLE PRECISION array, dimension (P) | |||
| *> TAUP1 is DOUBLE PRECISION array, dimension (P-1) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is DOUBLE PRECISION array, dimension (M-P) | |||
| *> TAUP2 is DOUBLE PRECISION array, dimension (Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -124,14 +124,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is DOUBLE PRECISION array, dimension (P) | |||
| *> TAUP1 is DOUBLE PRECISION array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is DOUBLE PRECISION array, dimension (M-P) | |||
| *> TAUP2 is DOUBLE PRECISION array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -41,10 +41,16 @@ | |||
| *> with respect to the columns of | |||
| *> Q = [ Q1 ] . | |||
| *> [ Q2 ] | |||
| *> The columns of Q must be orthonormal. | |||
| *> The Euclidean norm of X must be one and the columns of Q must be | |||
| *> orthonormal. The orthogonalized vector will be zero if and only if it | |||
| *> lies entirely in the range of Q. | |||
| *> | |||
| *> If the projection is zero according to Kahan's "twice is enough" | |||
| *> criterion, then the zero vector is returned. | |||
| *> The projection is computed with at most two iterations of the | |||
| *> classical Gram-Schmidt algorithm, see | |||
| *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error | |||
| *> analysis of the Gram-Schmidt algorithm with reorthogonalization." | |||
| *> 2002. CERFACS Technical Report No. TR/PA/02/33. URL: | |||
| *> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf | |||
| *> | |||
| *>\endverbatim | |||
| * | |||
| @@ -167,15 +173,18 @@ | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ALPHASQ, REALONE, REALZERO | |||
| PARAMETER ( ALPHASQ = 0.01D0, REALONE = 1.0D0, | |||
| DOUBLE PRECISION ALPHA, REALONE, REALZERO | |||
| PARAMETER ( ALPHA = 0.01D0, REALONE = 1.0D0, | |||
| $ REALZERO = 0.0D0 ) | |||
| DOUBLE PRECISION NEGONE, ONE, ZERO | |||
| PARAMETER ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| INTEGER I | |||
| DOUBLE PRECISION NORMSQ1, NORMSQ2, SCL1, SCL2, SSQ1, SSQ2 | |||
| INTEGER I, IX | |||
| DOUBLE PRECISION EPS, NORM, NORM_NEW, SCL, SSQ | |||
| * .. | |||
| * .. External Functions .. | |||
| DOUBLE PRECISION DLAMCH | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL DGEMV, DLASSQ, XERBLA | |||
| @@ -210,17 +219,17 @@ | |||
| CALL XERBLA( 'DORBDB6', -INFO ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| EPS = DLAMCH( 'Precision' ) | |||
| * | |||
| * First, project X onto the orthogonal complement of Q's column | |||
| * space | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL DLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ1 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| * Christoph Conrads: In debugging mode the norm should be computed | |||
| * and an assertion added comparing the norm with one. Alas, Fortran | |||
| * never made it into 1989 when assert() was introduced into the C | |||
| * programming language. | |||
| NORM = REALONE | |||
| * | |||
| IF( M1 .EQ. 0 ) THEN | |||
| DO I = 1, N | |||
| @@ -238,27 +247,31 @@ | |||
| CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL DLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL DLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL DLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If projection is sufficiently large in norm, then stop. | |||
| * If projection is zero, then stop. | |||
| * Otherwise, project again. | |||
| * | |||
| IF( NORMSQ2 .GE. ALPHASQ*NORMSQ1 ) THEN | |||
| IF( NORM_NEW .GE. ALPHA * NORM ) THEN | |||
| RETURN | |||
| END IF | |||
| * | |||
| IF( NORMSQ2 .EQ. ZERO ) THEN | |||
| IF( NORM_NEW .LE. N * EPS * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1( IX ) = ZERO | |||
| END DO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2( IX ) = ZERO | |||
| END DO | |||
| RETURN | |||
| END IF | |||
| * | |||
| NORMSQ1 = NORMSQ2 | |||
| NORM = NORM_NEW | |||
| * | |||
| DO I = 1, N | |||
| WORK(I) = ZERO | |||
| @@ -280,24 +293,22 @@ | |||
| CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL DLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL DLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL DLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If second projection is sufficiently large in norm, then do | |||
| * nothing more. Alternatively, if it shrunk significantly, then | |||
| * truncate it to zero. | |||
| * | |||
| IF( NORMSQ2 .LT. ALPHASQ*NORMSQ1 ) THEN | |||
| DO I = 1, M1 | |||
| X1(I) = ZERO | |||
| IF( NORM_NEW .LT. ALPHA * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1(IX) = ZERO | |||
| END DO | |||
| DO I = 1, M2 | |||
| X2(I) = ZERO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2(IX) = ZERO | |||
| END DO | |||
| END IF | |||
| * | |||
| @@ -306,4 +317,3 @@ | |||
| * End of DORBDB6 | |||
| * | |||
| END | |||
| @@ -122,14 +122,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is REAL array, dimension (P) | |||
| *> TAUP1 is REAL array, dimension (P-1) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is REAL array, dimension (M-P) | |||
| *> TAUP2 is REAL array, dimension (Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -124,14 +124,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is REAL array, dimension (P) | |||
| *> TAUP1 is REAL array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is REAL array, dimension (M-P) | |||
| *> TAUP2 is REAL array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -41,10 +41,16 @@ | |||
| *> with respect to the columns of | |||
| *> Q = [ Q1 ] . | |||
| *> [ Q2 ] | |||
| *> The columns of Q must be orthonormal. | |||
| *> The Euclidean norm of X must be one and the columns of Q must be | |||
| *> orthonormal. The orthogonalized vector will be zero if and only if it | |||
| *> lies entirely in the range of Q. | |||
| *> | |||
| *> If the projection is zero according to Kahan's "twice is enough" | |||
| *> criterion, then the zero vector is returned. | |||
| *> The projection is computed with at most two iterations of the | |||
| *> classical Gram-Schmidt algorithm, see | |||
| *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error | |||
| *> analysis of the Gram-Schmidt algorithm with reorthogonalization." | |||
| *> 2002. CERFACS Technical Report No. TR/PA/02/33. URL: | |||
| *> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf | |||
| *> | |||
| *>\endverbatim | |||
| * | |||
| @@ -167,15 +173,18 @@ | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| REAL ALPHASQ, REALONE, REALZERO | |||
| PARAMETER ( ALPHASQ = 0.01E0, REALONE = 1.0E0, | |||
| REAL ALPHA, REALONE, REALZERO | |||
| PARAMETER ( ALPHA = 0.01E0, REALONE = 1.0E0, | |||
| $ REALZERO = 0.0E0 ) | |||
| REAL NEGONE, ONE, ZERO | |||
| PARAMETER ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| INTEGER I | |||
| REAL NORMSQ1, NORMSQ2, SCL1, SCL2, SSQ1, SSQ2 | |||
| INTEGER I, IX | |||
| REAL EPS, NORM, NORM_NEW, SCL, SSQ | |||
| * .. | |||
| * .. External Functions .. | |||
| REAL SLAMCH | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL SGEMV, SLASSQ, XERBLA | |||
| @@ -210,17 +219,17 @@ | |||
| CALL XERBLA( 'SORBDB6', -INFO ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| EPS = SLAMCH( 'Precision' ) | |||
| * | |||
| * First, project X onto the orthogonal complement of Q's column | |||
| * space | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL SLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL SLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ1 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| * Christoph Conrads: In debugging mode the norm should be computed | |||
| * and an assertion added comparing the norm with one. Alas, Fortran | |||
| * never made it into 1989 when assert() was introduced into the C | |||
| * programming language. | |||
| NORM = REALONE | |||
| * | |||
| IF( M1 .EQ. 0 ) THEN | |||
| DO I = 1, N | |||
| @@ -238,27 +247,31 @@ | |||
| CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL SLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL SLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL SLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL SLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If projection is sufficiently large in norm, then stop. | |||
| * If projection is zero, then stop. | |||
| * Otherwise, project again. | |||
| * | |||
| IF( NORMSQ2 .GE. ALPHASQ*NORMSQ1 ) THEN | |||
| IF( NORM_NEW .GE. ALPHA * NORM ) THEN | |||
| RETURN | |||
| END IF | |||
| * | |||
| IF( NORMSQ2 .EQ. ZERO ) THEN | |||
| IF( NORM_NEW .LE. N * EPS * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1( IX ) = ZERO | |||
| END DO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2( IX ) = ZERO | |||
| END DO | |||
| RETURN | |||
| END IF | |||
| * | |||
| NORMSQ1 = NORMSQ2 | |||
| NORM = NORM_NEW | |||
| * | |||
| DO I = 1, N | |||
| WORK(I) = ZERO | |||
| @@ -280,24 +293,22 @@ | |||
| CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL SLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL SLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL SLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL SLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If second projection is sufficiently large in norm, then do | |||
| * nothing more. Alternatively, if it shrunk significantly, then | |||
| * truncate it to zero. | |||
| * | |||
| IF( NORMSQ2 .LT. ALPHASQ*NORMSQ1 ) THEN | |||
| DO I = 1, M1 | |||
| X1(I) = ZERO | |||
| IF( NORM_NEW .LT. ALPHA * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1(IX) = ZERO | |||
| END DO | |||
| DO I = 1, M2 | |||
| X2(I) = ZERO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2(IX) = ZERO | |||
| END DO | |||
| END IF | |||
| * | |||
| @@ -306,4 +317,3 @@ | |||
| * End of SORBDB6 | |||
| * | |||
| END | |||
| @@ -122,14 +122,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is COMPLEX*16 array, dimension (P) | |||
| *> TAUP1 is COMPLEX*16 array, dimension (P-1) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is COMPLEX*16 array, dimension (M-P) | |||
| *> TAUP2 is COMPLEX*16 array, dimension (Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -124,14 +124,14 @@ | |||
| *> | |||
| *> \param[out] TAUP1 | |||
| *> \verbatim | |||
| *> TAUP1 is COMPLEX*16 array, dimension (P) | |||
| *> TAUP1 is COMPLEX*16 array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P1. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] TAUP2 | |||
| *> \verbatim | |||
| *> TAUP2 is COMPLEX*16 array, dimension (M-P) | |||
| *> TAUP2 is COMPLEX*16 array, dimension (M-Q) | |||
| *> The scalar factors of the elementary reflectors that define | |||
| *> P2. | |||
| *> \endverbatim | |||
| @@ -41,10 +41,16 @@ | |||
| *> with respect to the columns of | |||
| *> Q = [ Q1 ] . | |||
| *> [ Q2 ] | |||
| *> The columns of Q must be orthonormal. | |||
| *> The Euclidean norm of X must be one and the columns of Q must be | |||
| *> orthonormal. The orthogonalized vector will be zero if and only if it | |||
| *> lies entirely in the range of Q. | |||
| *> | |||
| *> If the projection is zero according to Kahan's "twice is enough" | |||
| *> criterion, then the zero vector is returned. | |||
| *> The projection is computed with at most two iterations of the | |||
| *> classical Gram-Schmidt algorithm, see | |||
| *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error | |||
| *> analysis of the Gram-Schmidt algorithm with reorthogonalization." | |||
| *> 2002. CERFACS Technical Report No. TR/PA/02/33. URL: | |||
| *> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf | |||
| *> | |||
| *>\endverbatim | |||
| * | |||
| @@ -167,16 +173,19 @@ | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| DOUBLE PRECISION ALPHASQ, REALONE, REALZERO | |||
| PARAMETER ( ALPHASQ = 0.01D0, REALONE = 1.0D0, | |||
| DOUBLE PRECISION ALPHA, REALONE, REALZERO | |||
| PARAMETER ( ALPHA = 0.01D0, REALONE = 1.0D0, | |||
| $ REALZERO = 0.0D0 ) | |||
| COMPLEX*16 NEGONE, ONE, ZERO | |||
| PARAMETER ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0), | |||
| $ ZERO = (0.0D0,0.0D0) ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| INTEGER I | |||
| DOUBLE PRECISION NORMSQ1, NORMSQ2, SCL1, SCL2, SSQ1, SSQ2 | |||
| INTEGER I, IX | |||
| DOUBLE PRECISION EPS, NORM, NORM_NEW, SCL, SSQ | |||
| * .. | |||
| * .. External Functions .. | |||
| DOUBLE PRECISION DLAMCH | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL ZGEMV, ZLASSQ, XERBLA | |||
| @@ -211,17 +220,17 @@ | |||
| CALL XERBLA( 'ZUNBDB6', -INFO ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| EPS = DLAMCH( 'Precision' ) | |||
| * | |||
| * First, project X onto the orthogonal complement of Q's column | |||
| * space | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL ZLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ1 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| * Christoph Conrads: In debugging mode the norm should be computed | |||
| * and an assertion added comparing the norm with one. Alas, Fortran | |||
| * never made it into 1989 when assert() was introduced into the C | |||
| * programming language. | |||
| NORM = REALONE | |||
| * | |||
| IF( M1 .EQ. 0 ) THEN | |||
| DO I = 1, N | |||
| @@ -239,27 +248,31 @@ | |||
| CALL ZGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL ZLASSQ( M2, X2, INCX2, SCL2, SSQ2 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL ZLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL ZLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If projection is sufficiently large in norm, then stop. | |||
| * If projection is zero, then stop. | |||
| * Otherwise, project again. | |||
| * | |||
| IF( NORMSQ2 .GE. ALPHASQ*NORMSQ1 ) THEN | |||
| IF( NORM_NEW .GE. ALPHA * NORM ) THEN | |||
| RETURN | |||
| END IF | |||
| * | |||
| IF( NORMSQ2 .EQ. ZERO ) THEN | |||
| IF( NORM_NEW .LE. N * EPS * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1( IX ) = ZERO | |||
| END DO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2( IX ) = ZERO | |||
| END DO | |||
| RETURN | |||
| END IF | |||
| * | |||
| NORMSQ1 = NORMSQ2 | |||
| NORM = NORM_NEW | |||
| * | |||
| DO I = 1, N | |||
| WORK(I) = ZERO | |||
| @@ -281,24 +294,22 @@ | |||
| CALL ZGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2, | |||
| $ INCX2 ) | |||
| * | |||
| SCL1 = REALZERO | |||
| SSQ1 = REALONE | |||
| CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| SCL2 = REALZERO | |||
| SSQ2 = REALONE | |||
| CALL ZLASSQ( M1, X1, INCX1, SCL1, SSQ1 ) | |||
| NORMSQ2 = SCL1**2*SSQ1 + SCL2**2*SSQ2 | |||
| SCL = REALZERO | |||
| SSQ = REALZERO | |||
| CALL ZLASSQ( M1, X1, INCX1, SCL, SSQ ) | |||
| CALL ZLASSQ( M2, X2, INCX2, SCL, SSQ ) | |||
| NORM_NEW = SCL * SQRT(SSQ) | |||
| * | |||
| * If second projection is sufficiently large in norm, then do | |||
| * nothing more. Alternatively, if it shrunk significantly, then | |||
| * truncate it to zero. | |||
| * | |||
| IF( NORMSQ2 .LT. ALPHASQ*NORMSQ1 ) THEN | |||
| DO I = 1, M1 | |||
| X1(I) = ZERO | |||
| IF( NORM_NEW .LT. ALPHA * NORM ) THEN | |||
| DO IX = 1, 1 + (M1-1)*INCX1, INCX1 | |||
| X1(IX) = ZERO | |||
| END DO | |||
| DO I = 1, M2 | |||
| X2(I) = ZERO | |||
| DO IX = 1, 1 + (M2-1)*INCX2, INCX2 | |||
| X2(IX) = ZERO | |||
| END DO | |||
| END IF | |||
| * | |||
| @@ -307,4 +318,3 @@ | |||
| * End of ZUNBDB6 | |||
| * | |||
| END | |||