|
|
|
@@ -0,0 +1,625 @@ |
|
|
|
#include "sbgemm.h" |
|
|
|
#include "bf16_common_macros.h" |
|
|
|
#include <immintrin.h> |
|
|
|
|
|
|
|
#undef STORE16_COMPLETE_RESULT |
|
|
|
#undef STORE16_MASK_COMPLETE_RESULT |
|
|
|
#undef SBGEMM_BLOCK_KERNEL_32x8x32 |
|
|
|
#undef SBGEMM_BLOCK_KERNEL_16x8x32 |
|
|
|
#undef SBGEMM_BLOCK_KERNEL_32xNx32 |
|
|
|
#undef SBGEMM_BLOCK_KERNEL_16xNx32 |
|
|
|
#undef SBGEMM_BLOCKING_KERNEL_2 |
|
|
|
|
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
#define STORE16_COMPLETE_RESULT STORE16_COMPLETE_RESULT_ALPHA_ONE |
|
|
|
#define STORE16_MASK_COMPLETE_RESULT STORE16_MASK_COMPLETE_RESULT_ALPHA_ONE |
|
|
|
#define SBGEMM_BLOCK_KERNEL_32x8x32 sbgemm_block_kernel_32x8x32_alpha |
|
|
|
#define SBGEMM_BLOCK_KERNEL_16x8x32 sbgemm_block_kernel_16x8x32_alpha |
|
|
|
#define SBGEMM_BLOCK_KERNEL_32xNx32 sbgemm_block_kernel_32xNx32_alpha |
|
|
|
#define SBGEMM_BLOCK_KERNEL_16xNx32 sbgemm_block_kernel_16xNx32_alpha |
|
|
|
#define SBGEMM_BLOCKING_KERNEL_2 sbgemm_blocking_kernel_2_alpha |
|
|
|
#else // ALPHA is ONE |
|
|
|
#define STORE16_COMPLETE_RESULT STORE16_COMPLETE_RESULT_ONE_ONE |
|
|
|
#define STORE16_MASK_COMPLETE_RESULT STORE16_MASK_COMPLETE_RESULT_ONE_ONE |
|
|
|
#define SBGEMM_BLOCK_KERNEL_32x8x32 sbgemm_block_kernel_32x8x32_one |
|
|
|
#define SBGEMM_BLOCK_KERNEL_16x8x32 sbgemm_block_kernel_16x8x32_one |
|
|
|
#define SBGEMM_BLOCK_KERNEL_32xNx32 sbgemm_block_kernel_32xNx32_one |
|
|
|
#define SBGEMM_BLOCK_KERNEL_16xNx32 sbgemm_block_kernel_16xNx32_one |
|
|
|
#define SBGEMM_BLOCKING_KERNEL_2 sbgemm_blocking_kernel_2_one |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
// SBGEMM Kernel for 16<M<=32, N=8, K can be any number, but the processing will take 32 as a base |
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
void sbgemm_block_kernel_32x8x32_alpha(BLASLONG m, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#else // ALPHA is ONE |
|
|
|
void sbgemm_block_kernel_32x8x32_one(BLASLONG m, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
int SHUFFLE_MAGIC_NO = 0x39; |
|
|
|
BLASLONG tag_k_32x = k & (~31); |
|
|
|
BLASLONG idxA_base = 0; |
|
|
|
BLASLONG idxB_base = 0; |
|
|
|
BLASLONG width = 32; |
|
|
|
|
|
|
|
#ifndef ONE_ALPHA |
|
|
|
__m512 ALPHAVECTOR = _mm512_set1_ps(alpha); |
|
|
|
#endif |
|
|
|
|
|
|
|
__m512i arrayA_512_0, arrayA_512_1; |
|
|
|
__m512i arrayB_512_0, arrayB_512_1, arrayB_512_2, arrayB_512_3, arrayB_512_4, arrayB_512_5, arrayB_512_6, arrayB_512_7; |
|
|
|
__m512 result_512_0, result_512_1, result_512_2, result_512_3, result_512_4, result_512_5, result_512_6, result_512_7, |
|
|
|
result_512_8, result_512_9, result_512_10, result_512_11, result_512_12, result_512_13, result_512_14, result_512_15; |
|
|
|
__m512 result_512_tmp_0, result_512_tmp_1, result_512_tmp_2, result_512_tmp_3; |
|
|
|
|
|
|
|
__m512i M512_EPI32_8 = _mm512_set1_epi32(8); |
|
|
|
__m512i shuffle_idx_base0 = _mm512_set_epi32(23, 22, 21, 20, 7, 6, 5, 4, 19, 18, 17, 16, 3, 2, 1, 0); |
|
|
|
__m512i shuffle_idx_base1 = _mm512_add_epi32(shuffle_idx_base0, M512_EPI32_8); |
|
|
|
|
|
|
|
result_512_0 = _mm512_setzero_ps(); |
|
|
|
result_512_1 = _mm512_setzero_ps(); |
|
|
|
result_512_2 = _mm512_setzero_ps(); |
|
|
|
result_512_3 = _mm512_setzero_ps(); |
|
|
|
result_512_4 = _mm512_setzero_ps(); |
|
|
|
result_512_5 = _mm512_setzero_ps(); |
|
|
|
result_512_6 = _mm512_setzero_ps(); |
|
|
|
result_512_7 = _mm512_setzero_ps(); |
|
|
|
result_512_8 = _mm512_setzero_ps(); |
|
|
|
result_512_9 = _mm512_setzero_ps(); |
|
|
|
result_512_10 = _mm512_setzero_ps(); |
|
|
|
result_512_11 = _mm512_setzero_ps(); |
|
|
|
result_512_12 = _mm512_setzero_ps(); |
|
|
|
result_512_13 = _mm512_setzero_ps(); |
|
|
|
result_512_14 = _mm512_setzero_ps(); |
|
|
|
result_512_15 = _mm512_setzero_ps(); |
|
|
|
|
|
|
|
for (BLASLONG idx_k = 0; idx_k < k; idx_k += 32) { |
|
|
|
// Load B with unroll 8 |
|
|
|
idxB_base = idx_k << 3; |
|
|
|
arrayB_512_0 = _mm512_loadu_si512(&B[idxB_base + 32*0]); |
|
|
|
arrayB_512_1 = _mm512_loadu_si512(&B[idxB_base + 32*1]); |
|
|
|
arrayB_512_2 = _mm512_loadu_si512(&B[idxB_base + 32*2]); |
|
|
|
arrayB_512_3 = _mm512_loadu_si512(&B[idxB_base + 32*3]); |
|
|
|
arrayB_512_4 = _mm512_loadu_si512(&B[idxB_base + 32*4]); |
|
|
|
arrayB_512_5 = _mm512_loadu_si512(&B[idxB_base + 32*5]); |
|
|
|
arrayB_512_6 = _mm512_loadu_si512(&B[idxB_base + 32*6]); |
|
|
|
arrayB_512_7 = _mm512_loadu_si512(&B[idxB_base + 32*7]); |
|
|
|
|
|
|
|
if (idx_k == tag_k_32x) {width = k - tag_k_32x;} |
|
|
|
|
|
|
|
for (BLASLONG idx = 0; idx < width;) { |
|
|
|
// Each two rows are a group for 32-pair bf16 elements |
|
|
|
idxA_base = idx << 5; |
|
|
|
arrayA_512_0 = _mm512_loadu_si512(&A[idxA_base]); |
|
|
|
arrayA_512_1 = _mm512_loadu_si512(&A[idxA_base + 32]); |
|
|
|
|
|
|
|
result_512_0 = _mm512_dpbf16_ps(result_512_0, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_0))); |
|
|
|
result_512_1 = _mm512_dpbf16_ps(result_512_1, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_1))); |
|
|
|
result_512_2 = _mm512_dpbf16_ps(result_512_2, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_2))); |
|
|
|
result_512_3 = _mm512_dpbf16_ps(result_512_3, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_3))); |
|
|
|
result_512_4 = _mm512_dpbf16_ps(result_512_4, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_4))); |
|
|
|
result_512_5 = _mm512_dpbf16_ps(result_512_5, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_5))); |
|
|
|
result_512_6 = _mm512_dpbf16_ps(result_512_6, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_6))); |
|
|
|
result_512_7 = _mm512_dpbf16_ps(result_512_7, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_7))); |
|
|
|
result_512_8 = _mm512_dpbf16_ps(result_512_8, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_0))); |
|
|
|
result_512_9 = _mm512_dpbf16_ps(result_512_9, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_1))); |
|
|
|
result_512_10 = _mm512_dpbf16_ps(result_512_10, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_2))); |
|
|
|
result_512_11 = _mm512_dpbf16_ps(result_512_11, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_3))); |
|
|
|
result_512_12 = _mm512_dpbf16_ps(result_512_12, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_4))); |
|
|
|
result_512_13 = _mm512_dpbf16_ps(result_512_13, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_5))); |
|
|
|
result_512_14 = _mm512_dpbf16_ps(result_512_14, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_6))); |
|
|
|
result_512_15 = _mm512_dpbf16_ps(result_512_15, (__m512bh) arrayA_512_1, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_7))); |
|
|
|
|
|
|
|
arrayB_512_0 = _mm512_shuffle_epi32(arrayB_512_0, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_1 = _mm512_shuffle_epi32(arrayB_512_1, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_2 = _mm512_shuffle_epi32(arrayB_512_2, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_3 = _mm512_shuffle_epi32(arrayB_512_3, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_4 = _mm512_shuffle_epi32(arrayB_512_4, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_5 = _mm512_shuffle_epi32(arrayB_512_5, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_6 = _mm512_shuffle_epi32(arrayB_512_6, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_7 = _mm512_shuffle_epi32(arrayB_512_7, SHUFFLE_MAGIC_NO); |
|
|
|
|
|
|
|
idx += 2; |
|
|
|
// Every 4 loops we need to switch to next 128 bits of arrayB registers |
|
|
|
if ((idx & (~7)) == idx) { |
|
|
|
arrayB_512_0 = _mm512_shuffle_i32x4(arrayB_512_0, arrayB_512_0, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_1 = _mm512_shuffle_i32x4(arrayB_512_1, arrayB_512_1, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_2 = _mm512_shuffle_i32x4(arrayB_512_2, arrayB_512_2, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_3 = _mm512_shuffle_i32x4(arrayB_512_3, arrayB_512_3, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_4 = _mm512_shuffle_i32x4(arrayB_512_4, arrayB_512_4, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_5 = _mm512_shuffle_i32x4(arrayB_512_5, arrayB_512_5, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_6 = _mm512_shuffle_i32x4(arrayB_512_6, arrayB_512_6, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_7 = _mm512_shuffle_i32x4(arrayB_512_7, arrayB_512_7, SHUFFLE_MAGIC_NO); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (m != 32) { |
|
|
|
unsigned short tail_mask_value = (((unsigned short)0xffff) >> (32-m)); |
|
|
|
__mmask16 tail_mask = *((__mmask16*) &tail_mask_value); |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_0, shuffle_idx_base0, result_512_8); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_0, shuffle_idx_base1, result_512_8); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_1, shuffle_idx_base0, result_512_9); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_1, shuffle_idx_base1, result_512_9); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*0])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*0+16]), tail_mask) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*1])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*1+16]), tail_mask) |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_2, shuffle_idx_base0, result_512_10); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_2, shuffle_idx_base1, result_512_10); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_3, shuffle_idx_base0, result_512_11); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_3, shuffle_idx_base1, result_512_11); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*2])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*2+16]), tail_mask) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*3])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*3+16]), tail_mask) |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_4, shuffle_idx_base0, result_512_12); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_4, shuffle_idx_base1, result_512_12); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_5, shuffle_idx_base0, result_512_13); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_5, shuffle_idx_base1, result_512_13); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*4])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*4+16]), tail_mask) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*5])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*5+16]), tail_mask) |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_6, shuffle_idx_base0, result_512_14); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_6, shuffle_idx_base1, result_512_14); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_7, shuffle_idx_base0, result_512_15); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_7, shuffle_idx_base1, result_512_15); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*6])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*6+16]), tail_mask) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*7])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*7+16]), tail_mask) |
|
|
|
} else { |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_0, shuffle_idx_base0, result_512_8); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_0, shuffle_idx_base1, result_512_8); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_1, shuffle_idx_base0, result_512_9); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_1, shuffle_idx_base1, result_512_9); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*0])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*0+16])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*1])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*1+16])) |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_2, shuffle_idx_base0, result_512_10); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_2, shuffle_idx_base1, result_512_10); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_3, shuffle_idx_base0, result_512_11); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_3, shuffle_idx_base1, result_512_11); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*2])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*2+16])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*3])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*3+16])) |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_4, shuffle_idx_base0, result_512_12); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_4, shuffle_idx_base1, result_512_12); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_5, shuffle_idx_base0, result_512_13); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_5, shuffle_idx_base1, result_512_13); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*4])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*4+16])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*5])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*5+16])) |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512_6, shuffle_idx_base0, result_512_14); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512_6, shuffle_idx_base1, result_512_14); |
|
|
|
result_512_tmp_2 = _mm512_permutex2var_ps(result_512_7, shuffle_idx_base0, result_512_15); |
|
|
|
result_512_tmp_3 = _mm512_permutex2var_ps(result_512_7, shuffle_idx_base1, result_512_15); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*6])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*6+16])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_2, (&C[ldc*7])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_3, (&C[ldc*7+16])) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// SBGEMM Kernel for M<=16, N=8, K can be any number, but the processing will take 32 as a base |
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
void sbgemm_block_kernel_16x8x32_alpha(BLASLONG m, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#else // ALPHA is ONE |
|
|
|
void sbgemm_block_kernel_16x8x32_one(BLASLONG m, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
int SHUFFLE_MAGIC_NO = 0x39; |
|
|
|
BLASLONG tag_k_32x = k & (~31); |
|
|
|
BLASLONG idxB_base = 0; |
|
|
|
BLASLONG width = 32; |
|
|
|
|
|
|
|
#ifndef ONE_ALPHA |
|
|
|
__m512 ALPHAVECTOR = _mm512_set1_ps(alpha); |
|
|
|
#endif |
|
|
|
|
|
|
|
__m512i arrayA_512_0; |
|
|
|
__m512i arrayB_512_0, arrayB_512_1, arrayB_512_2, arrayB_512_3, arrayB_512_4, arrayB_512_5, arrayB_512_6, arrayB_512_7; |
|
|
|
__m512 result_512_0, result_512_1, result_512_2, result_512_3, result_512_4, result_512_5, result_512_6, result_512_7; |
|
|
|
|
|
|
|
result_512_0 = _mm512_setzero_ps(); |
|
|
|
result_512_1 = _mm512_setzero_ps(); |
|
|
|
result_512_2 = _mm512_setzero_ps(); |
|
|
|
result_512_3 = _mm512_setzero_ps(); |
|
|
|
result_512_4 = _mm512_setzero_ps(); |
|
|
|
result_512_5 = _mm512_setzero_ps(); |
|
|
|
result_512_6 = _mm512_setzero_ps(); |
|
|
|
result_512_7 = _mm512_setzero_ps(); |
|
|
|
|
|
|
|
for (BLASLONG idx_k = 0; idx_k < k; idx_k += 32) { |
|
|
|
// Load B with unroll 8 |
|
|
|
idxB_base = idx_k << 3; |
|
|
|
arrayB_512_0 = _mm512_loadu_si512(&B[idxB_base + 32*0]); |
|
|
|
arrayB_512_1 = _mm512_loadu_si512(&B[idxB_base + 32*1]); |
|
|
|
arrayB_512_2 = _mm512_loadu_si512(&B[idxB_base + 32*2]); |
|
|
|
arrayB_512_3 = _mm512_loadu_si512(&B[idxB_base + 32*3]); |
|
|
|
arrayB_512_4 = _mm512_loadu_si512(&B[idxB_base + 32*4]); |
|
|
|
arrayB_512_5 = _mm512_loadu_si512(&B[idxB_base + 32*5]); |
|
|
|
arrayB_512_6 = _mm512_loadu_si512(&B[idxB_base + 32*6]); |
|
|
|
arrayB_512_7 = _mm512_loadu_si512(&B[idxB_base + 32*7]); |
|
|
|
|
|
|
|
if (idx_k == tag_k_32x) {width = k - tag_k_32x;} |
|
|
|
|
|
|
|
for (BLASLONG idx = 0; idx < width;) { |
|
|
|
// Each two rows are a group for 32-pair bf16 elements |
|
|
|
// Load two rows into a 512 register |
|
|
|
arrayA_512_0 = _mm512_loadu_si512(&A[idx<<4]); |
|
|
|
|
|
|
|
result_512_0 = _mm512_dpbf16_ps(result_512_0, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_0))); |
|
|
|
result_512_1 = _mm512_dpbf16_ps(result_512_1, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_1))); |
|
|
|
result_512_2 = _mm512_dpbf16_ps(result_512_2, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_2))); |
|
|
|
result_512_3 = _mm512_dpbf16_ps(result_512_3, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_3))); |
|
|
|
result_512_4 = _mm512_dpbf16_ps(result_512_4, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_4))); |
|
|
|
result_512_5 = _mm512_dpbf16_ps(result_512_5, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_5))); |
|
|
|
result_512_6 = _mm512_dpbf16_ps(result_512_6, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_6))); |
|
|
|
result_512_7 = _mm512_dpbf16_ps(result_512_7, (__m512bh) arrayA_512_0, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512_7))); |
|
|
|
|
|
|
|
arrayB_512_0 = _mm512_shuffle_epi32(arrayB_512_0, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_1 = _mm512_shuffle_epi32(arrayB_512_1, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_2 = _mm512_shuffle_epi32(arrayB_512_2, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_3 = _mm512_shuffle_epi32(arrayB_512_3, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_4 = _mm512_shuffle_epi32(arrayB_512_4, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_5 = _mm512_shuffle_epi32(arrayB_512_5, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_6 = _mm512_shuffle_epi32(arrayB_512_6, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_7 = _mm512_shuffle_epi32(arrayB_512_7, SHUFFLE_MAGIC_NO); |
|
|
|
|
|
|
|
idx += 2; |
|
|
|
// Every 4 loops we need to switch to next 128 bits of arrayB registers |
|
|
|
if ((idx & (~7)) == idx) { |
|
|
|
arrayB_512_0 = _mm512_shuffle_i32x4(arrayB_512_0, arrayB_512_0, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_1 = _mm512_shuffle_i32x4(arrayB_512_1, arrayB_512_1, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_2 = _mm512_shuffle_i32x4(arrayB_512_2, arrayB_512_2, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_3 = _mm512_shuffle_i32x4(arrayB_512_3, arrayB_512_3, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_4 = _mm512_shuffle_i32x4(arrayB_512_4, arrayB_512_4, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_5 = _mm512_shuffle_i32x4(arrayB_512_5, arrayB_512_5, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_6 = _mm512_shuffle_i32x4(arrayB_512_6, arrayB_512_6, SHUFFLE_MAGIC_NO); |
|
|
|
arrayB_512_7 = _mm512_shuffle_i32x4(arrayB_512_7, arrayB_512_7, SHUFFLE_MAGIC_NO); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (m != 16) { |
|
|
|
unsigned short tail_mask_value = (((unsigned short)0xffff) >> (16-m)); |
|
|
|
__mmask16 tail_mask = *((__mmask16*) &tail_mask_value); |
|
|
|
|
|
|
|
result_512_0 = _mm512_shuffle_f32x4(result_512_0, result_512_0, 0xd8); |
|
|
|
result_512_1 = _mm512_shuffle_f32x4(result_512_1, result_512_1, 0xd8); |
|
|
|
result_512_2 = _mm512_shuffle_f32x4(result_512_2, result_512_2, 0xd8); |
|
|
|
result_512_3 = _mm512_shuffle_f32x4(result_512_3, result_512_3, 0xd8); |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_0, (&C[ldc*0]), tail_mask) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_1, (&C[ldc*1]), tail_mask) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_2, (&C[ldc*2]), tail_mask) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_3, (&C[ldc*3]), tail_mask) |
|
|
|
result_512_4 = _mm512_shuffle_f32x4(result_512_4, result_512_4, 0xd8); |
|
|
|
result_512_5 = _mm512_shuffle_f32x4(result_512_5, result_512_5, 0xd8); |
|
|
|
result_512_6 = _mm512_shuffle_f32x4(result_512_6, result_512_6, 0xd8); |
|
|
|
result_512_7 = _mm512_shuffle_f32x4(result_512_7, result_512_7, 0xd8); |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_4, (&C[ldc*4]), tail_mask) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_5, (&C[ldc*5]), tail_mask) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_6, (&C[ldc*6]), tail_mask) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_7, (&C[ldc*7]), tail_mask) |
|
|
|
} else { |
|
|
|
result_512_0 = _mm512_shuffle_f32x4(result_512_0, result_512_0, 0xd8); |
|
|
|
result_512_1 = _mm512_shuffle_f32x4(result_512_1, result_512_1, 0xd8); |
|
|
|
result_512_2 = _mm512_shuffle_f32x4(result_512_2, result_512_2, 0xd8); |
|
|
|
result_512_3 = _mm512_shuffle_f32x4(result_512_3, result_512_3, 0xd8); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_0, (&C[ldc*0])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_1, (&C[ldc*1])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_2, (&C[ldc*2])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_3, (&C[ldc*3])) |
|
|
|
result_512_4 = _mm512_shuffle_f32x4(result_512_4, result_512_4, 0xd8); |
|
|
|
result_512_5 = _mm512_shuffle_f32x4(result_512_5, result_512_5, 0xd8); |
|
|
|
result_512_6 = _mm512_shuffle_f32x4(result_512_6, result_512_6, 0xd8); |
|
|
|
result_512_7 = _mm512_shuffle_f32x4(result_512_7, result_512_7, 0xd8); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_4, (&C[ldc*4])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_5, (&C[ldc*5])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_6, (&C[ldc*6])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_7, (&C[ldc*7])) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// SBGEMM Kernel for 16<M<=32, N<8, K can be any number, but the processing will take 32 as a base |
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
void sbgemm_block_kernel_32xNx32_alpha(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#else // ALPHA is ONE |
|
|
|
void sbgemm_block_kernel_32xNx32_one(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
int SHUFFLE_MAGIC_NO = 0x39; |
|
|
|
BLASLONG tag_k_32x = k & (~31); |
|
|
|
BLASLONG idxA_base = 0; |
|
|
|
BLASLONG idxB_base = 0; |
|
|
|
BLASLONG width = 32; |
|
|
|
|
|
|
|
#ifndef ONE_ALPHA |
|
|
|
__m512 ALPHAVECTOR = _mm512_set1_ps(alpha); |
|
|
|
#endif |
|
|
|
|
|
|
|
__m512i arrayA_512[2]; |
|
|
|
__m512i arrayB_512[8]; |
|
|
|
__m512 result_512[16]; |
|
|
|
__m512 result_512_tmp_0, result_512_tmp_1; |
|
|
|
|
|
|
|
__m512i M512_EPI32_8 = _mm512_set1_epi32(8); |
|
|
|
__m512i shuffle_idx_base0 = _mm512_set_epi32(23, 22, 21, 20, 7, 6, 5, 4, 19, 18, 17, 16, 3, 2, 1, 0); |
|
|
|
__m512i shuffle_idx_base1 = _mm512_add_epi32(shuffle_idx_base0, M512_EPI32_8); |
|
|
|
|
|
|
|
for (int i = 0; i < 15; i += 2) { |
|
|
|
result_512[i] = _mm512_setzero_ps(); |
|
|
|
result_512[i+1] = _mm512_setzero_ps(); |
|
|
|
} |
|
|
|
|
|
|
|
for (BLASLONG idx_k = 0; idx_k < k; idx_k += 32) { |
|
|
|
// Load B with unroll n |
|
|
|
for (int i = 0; i < n; i ++) { |
|
|
|
arrayB_512[i] = _mm512_loadu_si512(&B[idxB_base]); |
|
|
|
idxB_base += 32; |
|
|
|
} |
|
|
|
|
|
|
|
if (idx_k == tag_k_32x) {width = k - tag_k_32x;} |
|
|
|
|
|
|
|
for (BLASLONG idx = 0; idx < width;) { |
|
|
|
// Each two rows are a group for 32-pair bf16 elements |
|
|
|
idxA_base = idx << 5; |
|
|
|
arrayA_512[0] = _mm512_loadu_si512(&A[idxA_base]); |
|
|
|
arrayA_512[1] = _mm512_loadu_si512(&A[idxA_base + 32]); |
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
result_512[i] = _mm512_dpbf16_ps(result_512[i] , (__m512bh) arrayA_512[0], (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512[i]))); |
|
|
|
result_512[i+8] = _mm512_dpbf16_ps(result_512[i+8], (__m512bh) arrayA_512[1], (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512[i]))); |
|
|
|
arrayB_512[i] = _mm512_shuffle_epi32(arrayB_512[i], SHUFFLE_MAGIC_NO); |
|
|
|
} |
|
|
|
|
|
|
|
idx += 2; |
|
|
|
// Every 4 loops we need to switch to next 128 bits of arrayB registers |
|
|
|
if ((idx & (~7)) == idx) { |
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
arrayB_512[i] = _mm512_shuffle_i32x4(arrayB_512[i], arrayB_512[i], SHUFFLE_MAGIC_NO); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (m != 32) { |
|
|
|
unsigned short tail_mask_value = (((unsigned short)0xffff) >> (32-m)); |
|
|
|
__mmask16 tail_mask = *((__mmask16*) &tail_mask_value); |
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512[i], shuffle_idx_base0, result_512[i+8]); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512[i], shuffle_idx_base1, result_512[i+8]); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*i])) |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*i+16]), tail_mask) |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
result_512_tmp_0 = _mm512_permutex2var_ps(result_512[i], shuffle_idx_base0, result_512[i+8]); |
|
|
|
result_512_tmp_1 = _mm512_permutex2var_ps(result_512[i], shuffle_idx_base1, result_512[i+8]); |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_0, (&C[ldc*i])) |
|
|
|
STORE16_COMPLETE_RESULT(result_512_tmp_1, (&C[ldc*i+16])) |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// SBGEMM Kernel for 16<=M, N<8, K can be any number, but the processing will take 32 as a base |
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
void sbgemm_block_kernel_16xNx32_alpha(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#else // ALPHA is ONE |
|
|
|
void sbgemm_block_kernel_16xNx32_one(BLASLONG m, BLASLONG n, BLASLONG k, float alpha, bfloat16 *A, bfloat16 *B, float *C, int ldc) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
int SHUFFLE_MAGIC_NO = 0x39; |
|
|
|
BLASLONG tag_k_32x = k & (~31); |
|
|
|
BLASLONG idxB_base = 0; |
|
|
|
BLASLONG width = 32; |
|
|
|
|
|
|
|
#ifndef ONE_ALPHA |
|
|
|
__m512 ALPHAVECTOR = _mm512_set1_ps(alpha); |
|
|
|
#endif |
|
|
|
|
|
|
|
__m512i arrayA_512; |
|
|
|
__m512i arrayB_512[8]; |
|
|
|
__m512 result_512[8]; |
|
|
|
|
|
|
|
for (int i = 0; i < 8; i += 2) { |
|
|
|
result_512[i] = _mm512_setzero_ps(); |
|
|
|
result_512[i+1] = _mm512_setzero_ps(); |
|
|
|
} |
|
|
|
|
|
|
|
for (BLASLONG idx_k = 0; idx_k < k; idx_k += 32) { |
|
|
|
// Load B with unroll n |
|
|
|
for (int i = 0; i < n; i ++) { |
|
|
|
arrayB_512[i] = _mm512_loadu_si512(&B[idxB_base]); |
|
|
|
idxB_base += 32; |
|
|
|
} |
|
|
|
|
|
|
|
if (idx_k == tag_k_32x) {width = k - tag_k_32x;} |
|
|
|
|
|
|
|
for (BLASLONG idx = 0; idx < width;) { |
|
|
|
// Each two rows are a group for 32-pair bf16 elements |
|
|
|
// Load two rows into a 512 register |
|
|
|
arrayA_512 = _mm512_loadu_si512(&A[idx<<4]); |
|
|
|
|
|
|
|
for (int i = 0; i < n; i ++) { |
|
|
|
result_512[i] = _mm512_dpbf16_ps(result_512[i], (__m512bh) arrayA_512, (__m512bh) _mm512_broadcastd_epi32(_mm512_castsi512_si128(arrayB_512[i]))); |
|
|
|
arrayB_512[i] = _mm512_shuffle_epi32(arrayB_512[i], SHUFFLE_MAGIC_NO); |
|
|
|
} |
|
|
|
|
|
|
|
idx += 2; |
|
|
|
// Every 4 loops we need to switch to next 128 bits of arrayB registers |
|
|
|
if ((idx & (~7)) == idx) { |
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
arrayB_512[i] = _mm512_shuffle_i32x4(arrayB_512[i], arrayB_512[i], SHUFFLE_MAGIC_NO); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (m != 16) { |
|
|
|
unsigned short tail_mask_value = (((unsigned short)0xffff) >> (16-m)); |
|
|
|
__mmask16 tail_mask = *((__mmask16*) &tail_mask_value); |
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
result_512[i] = _mm512_shuffle_f32x4(result_512[i], result_512[i], 0xd8); |
|
|
|
STORE16_MASK_COMPLETE_RESULT(result_512[i], (&C[ldc*i]), tail_mask) |
|
|
|
} |
|
|
|
} else { |
|
|
|
for (int i = 0; i < n; i++) { |
|
|
|
result_512[i] = _mm512_shuffle_f32x4(result_512[i], result_512[i], 0xd8); |
|
|
|
STORE16_COMPLETE_RESULT(result_512[i], (&C[ldc*i])) |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
void sbgemm_blocking_kernel_2_alpha(blasint M, blasint N, blasint K, float alpha, bfloat16 *A, blasint lda, bfloat16 *B, blasint ldb, float *C, blasint ldc, bfloat16 * block_A, bfloat16 * block_B) |
|
|
|
#else // ALPHA is ONE |
|
|
|
void sbgemm_blocking_kernel_2_one(blasint M, blasint N, blasint K, float alpha, bfloat16 *A, blasint lda, bfloat16 *B, blasint ldb, float *C, blasint ldc, bfloat16 * block_A, bfloat16 * block_B) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
BLASLONG m_step, n_step, k_step, k_step_round32; |
|
|
|
BLASLONG tag_m_Nx = M & (~(BF16_BLOCK_THRES_M-1)); |
|
|
|
|
|
|
|
BLASLONG n_from, n_to; |
|
|
|
BLASLONG tag_n_Nx; |
|
|
|
|
|
|
|
n_from = 0; |
|
|
|
n_to = (BF16_BLOCK_THRES_N > N) ? N : BF16_BLOCK_THRES_N; |
|
|
|
tag_n_Nx = n_to & (~(BF16_BLOCK_STEP_N-1)); |
|
|
|
|
|
|
|
k_step = (K > BF16_BLOCK_THRES_K) ? BF16_BLOCK_THRES_K : K; |
|
|
|
k_step_round32 = k_step & (~31); |
|
|
|
k_step_round32 = (k_step > k_step_round32) ? (k_step_round32 + 32) : k_step_round32; |
|
|
|
|
|
|
|
if (M >= BF16_BLOCK_THRES_M) { |
|
|
|
while (n_from < N) { |
|
|
|
for (BLASLONG idx_k = 0; idx_k < K;) { |
|
|
|
// Use Kx32 kernel when BF16_BLOCK_THRES_M==32, Kx16 kernel when BF16_BLOCK_THRES_M==16, ... |
|
|
|
COL_MAJOR_INCOPY_KERNEL_Kx32(k_step, &A(idx_k, 0), lda, block_A); |
|
|
|
// TODO: MT |
|
|
|
for (BLASLONG idx_n = n_from; idx_n < tag_n_Nx; idx_n += BF16_BLOCK_STEP_N) { |
|
|
|
// Use 8x32 kernel when BF16_BLOCK_THRES_N==8, 4x32 kernel when BF16_BLOCK_THRES_N==4, ... |
|
|
|
COL_MAJOR_ONCOPY_KERNEL_8x32(k_step, &B(idx_n, idx_k), ldb, block_B + (idx_n-n_from)*k_step_round32); |
|
|
|
SBGEMM_BLOCK_KERNEL_32x8x32(32, k_step, alpha, block_A, block_B + (idx_n-n_from)*k_step_round32, &C(idx_n, 0), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_n_Nx != n_to) { |
|
|
|
n_step = n_to - tag_n_Nx; |
|
|
|
COL_MAJOR_ONCOPY_KERNEL_Nx32(n_step, k_step, &B(tag_n_Nx, idx_k), ldb, block_B + (tag_n_Nx-n_from)*k_step_round32); |
|
|
|
SBGEMM_BLOCK_KERNEL_32xNx32(32, n_step, k_step, alpha, block_A, block_B + (tag_n_Nx-n_from)*k_step_round32, &C(tag_n_Nx, 0), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
for (BLASLONG idx_m = BF16_BLOCK_THRES_M; idx_m < tag_m_Nx; idx_m += BF16_BLOCK_THRES_M) { |
|
|
|
COL_MAJOR_INCOPY_KERNEL_Kx32(k_step, &A(idx_k, idx_m), lda, block_A); |
|
|
|
for (BLASLONG idx_n = n_from; idx_n < tag_n_Nx; idx_n += BF16_BLOCK_STEP_N) { |
|
|
|
SBGEMM_BLOCK_KERNEL_32x8x32(32, k_step, alpha, block_A, block_B + (idx_n-n_from)*k_step_round32, &C(idx_n, idx_m), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_n_Nx != n_to) { |
|
|
|
n_step = n_to - tag_n_Nx; |
|
|
|
SBGEMM_BLOCK_KERNEL_32xNx32(32, n_step, k_step, alpha, block_A, block_B + (tag_n_Nx-n_from)*k_step_round32, &C(tag_n_Nx, idx_m), ldc); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_m_Nx != M) { |
|
|
|
m_step = M - tag_m_Nx; |
|
|
|
if (m_step > 16) { |
|
|
|
COL_MAJOR_INCOPY_KERNEL_Kx32m(k_step, m_step, &A(idx_k, tag_m_Nx), lda, block_A); |
|
|
|
for (BLASLONG idx_n = n_from; idx_n < tag_n_Nx; idx_n += BF16_BLOCK_STEP_N) { |
|
|
|
SBGEMM_BLOCK_KERNEL_32x8x32(m_step, k_step, alpha, block_A, block_B + (idx_n-n_from)*k_step_round32, &C(idx_n, tag_m_Nx), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_n_Nx != n_to) { |
|
|
|
n_step = n_to - tag_n_Nx; |
|
|
|
SBGEMM_BLOCK_KERNEL_32xNx32(m_step, n_step, k_step, alpha, block_A, block_B + (tag_n_Nx-n_from)*k_step_round32, &C(tag_n_Nx, tag_m_Nx), ldc); |
|
|
|
} |
|
|
|
} else if (m_step == 16) { |
|
|
|
COL_MAJOR_INCOPY_KERNEL_Kx16(k_step, m_step, &A(idx_k, tag_m_Nx), lda, block_A); |
|
|
|
for (BLASLONG idx_n = n_from; idx_n < tag_n_Nx; idx_n += BF16_BLOCK_STEP_N) { |
|
|
|
SBGEMM_BLOCK_KERNEL_16x8x32(m_step, k_step, alpha, block_A, block_B + (idx_n-n_from)*k_step_round32, &C(idx_n, tag_m_Nx), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_n_Nx != n_to) { |
|
|
|
n_step = n_to - tag_n_Nx; |
|
|
|
SBGEMM_BLOCK_KERNEL_16xNx32(m_step, n_step, k_step, alpha, block_A, block_B + (tag_n_Nx-n_from)*k_step_round32, &C(tag_n_Nx, tag_m_Nx), ldc); |
|
|
|
} |
|
|
|
} else { |
|
|
|
COL_MAJOR_INCOPY_KERNEL_Kx16m(k_step, m_step, &A(idx_k, tag_m_Nx), lda, block_A); |
|
|
|
for (BLASLONG idx_n = n_from; idx_n < tag_n_Nx; idx_n += BF16_BLOCK_STEP_N) { |
|
|
|
SBGEMM_BLOCK_KERNEL_16x8x32(m_step, k_step, alpha, block_A, block_B + (idx_n-n_from)*k_step_round32, &C(idx_n, tag_m_Nx), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_n_Nx != n_to) { |
|
|
|
n_step = n_to - tag_n_Nx; |
|
|
|
SBGEMM_BLOCK_KERNEL_16xNx32(m_step, n_step, k_step, alpha, block_A, block_B + (tag_n_Nx-n_from)*k_step_round32, &C(tag_n_Nx, tag_m_Nx), ldc); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
idx_k += k_step; |
|
|
|
k_step = K - idx_k; |
|
|
|
k_step = (k_step > BF16_BLOCK_THRES_K) ? BF16_BLOCK_THRES_K : k_step; |
|
|
|
k_step_round32 = k_step & (~31); |
|
|
|
k_step_round32 = (k_step > k_step_round32) ? (k_step_round32 + 32) : k_step_round32; |
|
|
|
} |
|
|
|
|
|
|
|
n_from = n_to; |
|
|
|
n_to += BF16_BLOCK_THRES_N; |
|
|
|
n_to = (n_to > N) ? N : n_to; |
|
|
|
tag_n_Nx = n_to & (~(BF16_BLOCK_STEP_N-1)); |
|
|
|
} |
|
|
|
} else { |
|
|
|
m_step = M - tag_m_Nx; |
|
|
|
while (n_from < N) { |
|
|
|
for (BLASLONG idx_k = 0; idx_k < K;) { |
|
|
|
// Use Kx32 kernel when BF16_BLOCK_THRES_M==32, Kx16 kernel when BF16_BLOCK_THRES_M==16, ... |
|
|
|
COL_MAJOR_INCOPY_KERNEL_Kx32m(k_step, m_step, &A(idx_k, 0), lda, block_A); |
|
|
|
// TODO: MT |
|
|
|
for (BLASLONG idx_n = n_from; idx_n < tag_n_Nx; idx_n += BF16_BLOCK_STEP_N) { |
|
|
|
// Use 8x32 kernel when BF16_BLOCK_THRES_N==8, 4x32 kernel when BF16_BLOCK_THRES_N==4, ... |
|
|
|
COL_MAJOR_ONCOPY_KERNEL_8x32(k_step, &B(idx_n, idx_k), ldb, block_B + (idx_n-n_from)*k_step_round32); |
|
|
|
SBGEMM_BLOCK_KERNEL_32x8x32(m_step, k_step, alpha, block_A, block_B + (idx_n-n_from)*k_step_round32, &C(idx_n, 0), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
if (tag_n_Nx != n_to) { |
|
|
|
n_step = n_to - tag_n_Nx; |
|
|
|
COL_MAJOR_ONCOPY_KERNEL_Nx32(n_step, k_step, &B(tag_n_Nx, idx_k), ldb, block_B + (tag_n_Nx-n_from)*k_step_round32); |
|
|
|
SBGEMM_BLOCK_KERNEL_32xNx32(m_step, n_step, k_step, alpha, block_A, block_B + (tag_n_Nx-n_from)*k_step_round32, &C(tag_n_Nx, 0), ldc); |
|
|
|
} |
|
|
|
|
|
|
|
idx_k += k_step; |
|
|
|
k_step = K - idx_k; |
|
|
|
k_step = (k_step > BF16_BLOCK_THRES_K) ? BF16_BLOCK_THRES_K : k_step; |
|
|
|
k_step_round32 = k_step & (~31); |
|
|
|
k_step_round32 = (k_step > k_step_round32) ? (k_step_round32 + 32) : k_step_round32; |
|
|
|
} |
|
|
|
n_from = n_to; |
|
|
|
n_to += BF16_BLOCK_THRES_N; |
|
|
|
n_to = (n_to > N) ? N : n_to; |
|
|
|
tag_n_Nx = n_to & (~(BF16_BLOCK_STEP_N-1)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#ifndef ONE_ALPHA // ALPHA is not ONE |
|
|
|
void sbgemm_internal_kernel_alpha(OPENBLAS_CONST enum CBLAS_ORDER Order, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransA, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransB, OPENBLAS_CONST blasint M, OPENBLAS_CONST blasint N, OPENBLAS_CONST blasint K, |
|
|
|
OPENBLAS_CONST float alpha, OPENBLAS_CONST bfloat16 *A, OPENBLAS_CONST blasint lda, OPENBLAS_CONST bfloat16 *B, OPENBLAS_CONST blasint ldb, float *C, OPENBLAS_CONST blasint ldc) |
|
|
|
#else // ALPHA is ONE |
|
|
|
void sbgemm_internal_kernel_one(OPENBLAS_CONST enum CBLAS_ORDER Order, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransA, OPENBLAS_CONST enum CBLAS_TRANSPOSE TransB, OPENBLAS_CONST blasint M, OPENBLAS_CONST blasint N, OPENBLAS_CONST blasint K, |
|
|
|
OPENBLAS_CONST float alpha, OPENBLAS_CONST bfloat16 *A, OPENBLAS_CONST blasint lda, OPENBLAS_CONST bfloat16 *B, OPENBLAS_CONST blasint ldb, float *C, OPENBLAS_CONST blasint ldc) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
bfloat16 block_A[BF16_BLOCK_THRES_K * BF16_BLOCK_THRES_M]; |
|
|
|
bfloat16 block_B[BF16_BLOCK_THRES_N * BF16_BLOCK_THRES_K]; |
|
|
|
|
|
|
|
// TODO: assume no trans for both A and B, to complement these scenarios later |
|
|
|
if (Order == CblasColMajor) { |
|
|
|
SBGEMM_BLOCKING_KERNEL_2(M, N, K, alpha, A, lda, B, ldb, C, ldc, block_A, block_B); |
|
|
|
} else { |
|
|
|
|
|
|
|
} |
|
|
|
} |