| @@ -0,0 +1,995 @@ | |||
| SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, & | |||
| M, N, X, LDX, Y, LDY, NRNK, TOL, & | |||
| K, EIGS, Z, LDZ, RES, B, LDB, & | |||
| W, LDW, S, LDS, ZWORK, LZWORK, & | |||
| RWORK, LRWORK, IWORK, LIWORK, INFO ) | |||
| ! March 2023 | |||
| !..... | |||
| USE iso_fortran_env | |||
| IMPLICIT NONE | |||
| INTEGER, PARAMETER :: WP = real32 | |||
| !..... | |||
| ! Scalar arguments | |||
| CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF | |||
| INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, & | |||
| NRNK, LDZ, LDB, LDW, LDS, & | |||
| LIWORK, LRWORK, LZWORK | |||
| INTEGER, INTENT(OUT) :: K, INFO | |||
| REAL(KIND=WP), INTENT(IN) :: TOL | |||
| ! Array arguments | |||
| COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), & | |||
| W(LDW,*), S(LDS,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: RWORK(*) | |||
| INTEGER, INTENT(OUT) :: IWORK(*) | |||
| !............................................................ | |||
| ! Purpose | |||
| ! ======= | |||
| ! CGEDMD computes the Dynamic Mode Decomposition (DMD) for | |||
| ! a pair of data snapshot matrices. For the input matrices | |||
| ! X and Y such that Y = A*X with an unaccessible matrix | |||
| ! A, CGEDMD computes a certain number of Ritz pairs of A using | |||
| ! the standard Rayleigh-Ritz extraction from a subspace of | |||
| ! range(X) that is determined using the leading left singular | |||
| ! vectors of X. Optionally, CGEDMD returns the residuals | |||
| ! of the computed Ritz pairs, the information needed for | |||
| ! a refinement of the Ritz vectors, or the eigenvectors of | |||
| ! the Exact DMD. | |||
| ! For further details see the references listed | |||
| ! below. For more details of the implementation see [3]. | |||
| ! | |||
| ! References | |||
| ! ========== | |||
| ! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
| ! and experimental data, | |||
| ! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
| ! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
| ! decompositions: analysis and enhancements, | |||
| ! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
| ! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
| ! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
| ! and LAPACK Working Note 298. | |||
| ! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
| ! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
| ! Theory and Applications, Journal of Computational | |||
| ! Dynamics 1(2), 391 -421, 2014. | |||
| ! | |||
| !...................................................................... | |||
| ! Developed and supported by: | |||
| ! =========================== | |||
| ! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
| ! University of Zagreb; drmac@math.hr | |||
| ! In cooperation with | |||
| ! AIMdyn Inc., Santa Barbara, CA. | |||
| ! and supported by | |||
| ! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
| ! for Nonstationary Processes from Near-Term, Limited | |||
| ! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
| ! - DARPA PAI project "Physics-Informed Machine Learning | |||
| ! Methodologies" Contract No: HR0011-18-9-0033 | |||
| ! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
| ! Framework for Space-Time Analysis of Process Dynamics" | |||
| ! Contract No: HR0011-16-C-0116 | |||
| ! Any opinions, findings and conclusions or recommendations | |||
| ! expressed in this material are those of the author and | |||
| ! do not necessarily reflect the views of the DARPA SBIR | |||
| ! Program Office | |||
| !============================================================ | |||
| ! Distribution Statement A: | |||
| ! Approved for Public Release, Distribution Unlimited. | |||
| ! Cleared by DARPA on September 29, 2022 | |||
| !============================================================ | |||
| !...................................................................... | |||
| ! Arguments | |||
| ! ========= | |||
| ! JOBS (input) CHARACTER*1 | |||
| ! Determines whether the initial data snapshots are scaled | |||
| ! by a diagonal matrix. | |||
| ! 'S' :: The data snapshots matrices X and Y are multiplied | |||
| ! with a diagonal matrix D so that X*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'C' :: The snapshots are scaled as with the 'S' option. | |||
| ! If it is found that an i-th column of X is zero | |||
| ! vector and the corresponding i-th column of Y is | |||
| ! non-zero, then the i-th column of Y is set to | |||
| ! zero and a warning flag is raised. | |||
| ! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
| ! by a diagonal matrix D so that Y*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'N' :: No data scaling. | |||
| !..... | |||
| ! JOBZ (input) CHARACTER*1 | |||
| ! Determines whether the eigenvectors (Koopman modes) will | |||
| ! be computed. | |||
| ! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
| ! and returned in the matrix Z. | |||
| ! See the description of Z. | |||
| ! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product X(:,1:K)*W, where X | |||
| ! contains a POD basis (leading left singular vectors | |||
| ! of the data matrix X) and W contains the eigenvectors | |||
| ! of the corresponding Rayleigh quotient. | |||
| ! See the descriptions of K, X, W, Z. | |||
| ! 'N' :: The eigenvectors are not computed. | |||
| !..... | |||
| ! JOBR (input) CHARACTER*1 | |||
| ! Determines whether to compute the residuals. | |||
| ! 'R' :: The residuals for the computed eigenpairs will be | |||
| ! computed and stored in the array RES. | |||
| ! See the description of RES. | |||
| ! For this option to be legal, JOBZ must be 'V'. | |||
| ! 'N' :: The residuals are not computed. | |||
| !..... | |||
| ! JOBF (input) CHARACTER*1 | |||
| ! Specifies whether to store information needed for post- | |||
| ! processing (e.g. computing refined Ritz vectors) | |||
| ! 'R' :: The matrix needed for the refinement of the Ritz | |||
| ! vectors is computed and stored in the array B. | |||
| ! See the description of B. | |||
| ! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
| ! computed and returned in the array B. See the | |||
| ! description of B. | |||
| ! 'N' :: No eigenvector refinement data is computed. | |||
| !..... | |||
| ! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
| ! Allows for a selection of the SVD algorithm from the | |||
| ! LAPACK library. | |||
| ! 1 :: CGESVD (the QR SVD algorithm) | |||
| ! 2 :: CGESDD (the Divide and Conquer algorithm; if enough | |||
| ! workspace available, this is the fastest option) | |||
| ! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4 | |||
| ! are the most accurate options) | |||
| ! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
| ! are the most accurate options) | |||
| ! For the four methods above, a significant difference in | |||
| ! the accuracy of small singular values is possible if | |||
| ! the snapshots vary in norm so that X is severely | |||
| ! ill-conditioned. If small (smaller than EPS*||X||) | |||
| ! singular values are of interest and JOBS=='N', then | |||
| ! the options (3, 4) give the most accurate results, where | |||
| ! the option 4 is slightly better and with stronger | |||
| ! theoretical background. | |||
| ! If JOBS=='S', i.e. the columns of X will be normalized, | |||
| ! then all methods give nearly equally accurate results. | |||
| !..... | |||
| ! M (input) INTEGER, M>= 0 | |||
| ! The state space dimension (the row dimension of X, Y). | |||
| !..... | |||
| ! N (input) INTEGER, 0 <= N <= M | |||
| ! The number of data snapshot pairs | |||
| ! (the number of columns of X and Y). | |||
| !..... | |||
| ! X (input/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! > On entry, X contains the data snapshot matrix X. It is | |||
| ! assumed that the column norms of X are in the range of | |||
| ! the normalized floating point numbers. | |||
| ! < On exit, the leading K columns of X contain a POD basis, | |||
| ! i.e. the leading K left singular vectors of the input | |||
| ! data matrix X, U(:,1:K). All N columns of X contain all | |||
| ! left singular vectors of the input matrix X. | |||
| ! See the descriptions of K, Z and W. | |||
| !..... | |||
| ! LDX (input) INTEGER, LDX >= M | |||
| ! The leading dimension of the array X. | |||
| !..... | |||
| ! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! > On entry, Y contains the data snapshot matrix Y | |||
| ! < On exit, | |||
| ! If JOBR == 'R', the leading K columns of Y contain | |||
| ! the residual vectors for the computed Ritz pairs. | |||
| ! See the description of RES. | |||
| ! If JOBR == 'N', Y contains the original input data, | |||
| ! scaled according to the value of JOBS. | |||
| !..... | |||
| ! LDY (input) INTEGER , LDY >= M | |||
| ! The leading dimension of the array Y. | |||
| !..... | |||
| ! NRNK (input) INTEGER | |||
| ! Determines the mode how to compute the numerical rank, | |||
| ! i.e. how to truncate small singular values of the input | |||
| ! matrix X. On input, if | |||
| ! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(1) | |||
| ! This option is recommended. | |||
| ! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(i-1) | |||
| ! This option is included for R&D purposes. | |||
| ! It requires highly accurate SVD, which | |||
| ! may not be feasible. | |||
| ! The numerical rank can be enforced by using positive | |||
| ! value of NRNK as follows: | |||
| ! 0 < NRNK <= N :: at most NRNK largest singular values | |||
| ! will be used. If the number of the computed nonzero | |||
| ! singular values is less than NRNK, then only those | |||
| ! nonzero values will be used and the actually used | |||
| ! dimension is less than NRNK. The actual number of | |||
| ! the nonzero singular values is returned in the variable | |||
| ! K. See the descriptions of TOL and K. | |||
| !..... | |||
| ! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
| ! The tolerance for truncating small singular values. | |||
| ! See the description of NRNK. | |||
| !..... | |||
| ! K (output) INTEGER, 0 <= K <= N | |||
| ! The dimension of the POD basis for the data snapshot | |||
| ! matrix X and the number of the computed Ritz pairs. | |||
| ! The value of K is determined according to the rule set | |||
| ! by the parameters NRNK and TOL. | |||
| ! See the descriptions of NRNK and TOL. | |||
| !..... | |||
| ! EIGS (output) COMPLEX(KIND=WP) N-by-1 array | |||
| ! The leading K (K<=N) entries of EIGS contain | |||
| ! the computed eigenvalues (Ritz values). | |||
| ! See the descriptions of K, and Z. | |||
| !..... | |||
| ! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
| ! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
| ! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
| ! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) | |||
| ! is an eigenvector corresponding to EIGS(i). The columns | |||
| ! of W(1:k,1:K) are the computed eigenvectors of the | |||
| ! K-by-K Rayleigh quotient. | |||
| ! See the descriptions of EIGS, X and W. | |||
| !..... | |||
| ! LDZ (input) INTEGER , LDZ >= M | |||
| ! The leading dimension of the array Z. | |||
| !..... | |||
| ! RES (output) REAL(KIND=WP) N-by-1 array | |||
| ! RES(1:K) contains the residuals for the K computed | |||
| ! Ritz pairs, | |||
| ! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
| ! See the description of EIGS and Z. | |||
| !..... | |||
| ! B (output) COMPLEX(KIND=WP) M-by-N array. | |||
| ! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can | |||
| ! be used for computing the refined vectors; see further | |||
| ! details in the provided references. | |||
| ! If JOBF == 'E', B(1:M,1:K) contains | |||
| ! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
| ! Exact DMD, up to scaling by the inverse eigenvalues. | |||
| ! If JOBF =='N', then B is not referenced. | |||
| ! See the descriptions of X, W, K. | |||
| !..... | |||
| ! LDB (input) INTEGER, LDB >= M | |||
| ! The leading dimension of the array B. | |||
| !..... | |||
| ! W (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
| ! On exit, W(1:K,1:K) contains the K computed | |||
| ! eigenvectors of the matrix Rayleigh quotient. | |||
| ! The Ritz vectors (returned in Z) are the | |||
| ! product of X (containing a POD basis for the input | |||
| ! matrix X) and W. See the descriptions of K, S, X and Z. | |||
| ! W is also used as a workspace to temporarily store the | |||
| ! right singular vectors of X. | |||
| !..... | |||
| ! LDW (input) INTEGER, LDW >= N | |||
| ! The leading dimension of the array W. | |||
| !..... | |||
| ! S (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
| ! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
| ! quotient. This content is overwritten during | |||
| ! the eigenvalue decomposition by CGEEV. | |||
| ! See the description of K. | |||
| !..... | |||
| ! LDS (input) INTEGER, LDS >= N | |||
| ! The leading dimension of the array S. | |||
| !..... | |||
| ! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array | |||
| ! ZWORK is used as complex workspace in the complex SVD, as | |||
| ! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing | |||
| ! the eigenvalues of a Rayleigh quotient. | |||
| ! If the call to CGEDMD is only workspace query, then | |||
| ! ZWORK(1) contains the minimal complex workspace length and | |||
| ! ZWORK(2) is the optimal complex workspace length. | |||
| ! Hence, the length of work is at least 2. | |||
| ! See the description of LZWORK. | |||
| !..... | |||
| ! LZWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector ZWORK. | |||
| ! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV), | |||
| ! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal | |||
| ! LZWORK_SVD is calculated as follows | |||
| ! If WHTSVD == 1 :: CGESVD :: | |||
| ! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
| ! If WHTSVD == 2 :: CGESDD :: | |||
| ! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
| ! If WHTSVD == 3 :: CGESVDQ :: | |||
| ! LZWORK_SVD = obtainable by a query | |||
| ! If WHTSVD == 4 :: CGEJSV :: | |||
| ! LZWORK_SVD = obtainable by a query | |||
| ! If on entry LZWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths and returns them in | |||
| ! LZWORK(1) and LZWORK(2), respectively. | |||
| !..... | |||
| ! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array | |||
| ! On exit, RWORK(1:N) contains the singular values of | |||
| ! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). | |||
| ! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain | |||
| ! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X | |||
| ! and Y to avoid overflow in the SVD of X. | |||
| ! This may be of interest if the scaling option is off | |||
| ! and as many as possible smallest eigenvalues are | |||
| ! desired to the highest feasible accuracy. | |||
| ! If the call to CGEDMD is only workspace query, then | |||
| ! RWORK(1) contains the minimal workspace length. | |||
| ! See the description of LRWORK. | |||
| !..... | |||
| ! LRWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector RWORK. | |||
| ! LRWORK is calculated as follows: | |||
| ! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where | |||
| ! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace | |||
| ! for the SVD subroutine determined by the input parameter | |||
| ! WHTSVD. | |||
| ! If WHTSVD == 1 :: CGESVD :: | |||
| ! LRWORK_SVD = 5*MIN(M,N) | |||
| ! If WHTSVD == 2 :: CGESDD :: | |||
| ! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), | |||
| ! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
| ! If WHTSVD == 3 :: CGESVDQ :: | |||
| ! LRWORK_SVD = obtainable by a query | |||
| ! If WHTSVD == 4 :: CGEJSV :: | |||
| ! LRWORK_SVD = obtainable by a query | |||
| ! If on entry LRWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! real workspace length and returns it in RWORK(1). | |||
| !..... | |||
| ! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
| ! Workspace that is required only if WHTSVD equals | |||
| ! 2 , 3 or 4. (See the description of WHTSVD). | |||
| ! If on entry LWORK =-1 or LIWORK=-1, then the | |||
| ! minimal length of IWORK is computed and returned in | |||
| ! IWORK(1). See the description of LIWORK. | |||
| !..... | |||
| ! LIWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector IWORK. | |||
| ! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
| ! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) | |||
| ! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) | |||
| ! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) | |||
| ! If on entry LIWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for ZWORK, RWORK and | |||
| ! IWORK. See the descriptions of ZWORK, RWORK and IWORK. | |||
| !..... | |||
| ! INFO (output) INTEGER | |||
| ! -i < 0 :: On entry, the i-th argument had an | |||
| ! illegal value | |||
| ! = 0 :: Successful return. | |||
| ! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
| ! = 2 :: The SVD computation of X did not converge. | |||
| ! Suggestion: Check the input data and/or | |||
| ! repeat with different WHTSVD. | |||
| ! = 3 :: The computation of the eigenvalues did not | |||
| ! converge. | |||
| ! = 4 :: If data scaling was requested on input and | |||
| ! the procedure found inconsistency in the data | |||
| ! such that for some column index i, | |||
| ! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
| ! to zero if JOBS=='C'. The computation proceeds | |||
| ! with original or modified data and warning | |||
| ! flag is set with INFO=4. | |||
| !............................................................. | |||
| !............................................................. | |||
| ! Parameters | |||
| ! ~~~~~~~~~~ | |||
| REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
| REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
| COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
| COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
| ! Local scalars | |||
| ! ~~~~~~~~~~~~~ | |||
| REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, & | |||
| SSUM, XSCL1, XSCL2 | |||
| INTEGER :: i, j, IMINWR, INFO1, INFO2, & | |||
| LWRKEV, LWRSDD, LWRSVD, LWRSVJ, & | |||
| LWRSVQ, MLWORK, MWRKEV, MWRSDD, & | |||
| MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, & | |||
| OLWORK, MLRWRK | |||
| LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, & | |||
| WNTEX, WNTREF, WNTRES, WNTVEC | |||
| CHARACTER :: JOBZL, T_OR_N | |||
| CHARACTER :: JSVOPT | |||
| ! | |||
| ! Local arrays | |||
| ! ~~~~~~~~~~~~ | |||
| REAL(KIND=WP) :: RDUMMY(2) | |||
| ! External functions (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~ | |||
| REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2 | |||
| EXTERNAL CLANGE, SLAMCH, SCNRM2, ICAMAX | |||
| INTEGER ICAMAX | |||
| LOGICAL SISNAN, LSAME | |||
| EXTERNAL SISNAN, LSAME | |||
| ! External subroutines (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL CAXPY, CGEMM, CSSCAL | |||
| EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, & | |||
| CLACPY, CLASCL, CLASSQ, XERBLA | |||
| ! Intrinsic functions | |||
| ! ~~~~~~~~~~~~~~~~~~~ | |||
| INTRINSIC FLOAT, INT, MAX, SQRT | |||
| !............................................................ | |||
| ! | |||
| ! Test the input arguments | |||
| ! | |||
| WNTRES = LSAME(JOBR,'R') | |||
| SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C') | |||
| SCCOLY = LSAME(JOBS,'Y') | |||
| WNTVEC = LSAME(JOBZ,'V') | |||
| WNTREF = LSAME(JOBF,'R') | |||
| WNTEX = LSAME(JOBF,'E') | |||
| INFO = 0 | |||
| LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) & | |||
| .OR. ( LRWORK == -1 ) ) | |||
| ! | |||
| IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
| LSAME(JOBS,'N')) ) THEN | |||
| INFO = -1 | |||
| ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') & | |||
| .OR. LSAME(JOBZ,'F')) ) THEN | |||
| INFO = -2 | |||
| ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
| ( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN | |||
| INFO = -3 | |||
| ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
| LSAME(JOBF,'N') ) ) THEN | |||
| INFO = -4 | |||
| ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. & | |||
| (WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN | |||
| INFO = -5 | |||
| ELSE IF ( M < 0 ) THEN | |||
| INFO = -6 | |||
| ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN | |||
| INFO = -7 | |||
| ELSE IF ( LDX < M ) THEN | |||
| INFO = -9 | |||
| ELSE IF ( LDY < M ) THEN | |||
| INFO = -11 | |||
| ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
| ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
| INFO = -12 | |||
| ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
| INFO = -13 | |||
| ELSE IF ( LDZ < M ) THEN | |||
| INFO = -17 | |||
| ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN | |||
| INFO = -20 | |||
| ELSE IF ( LDW < N ) THEN | |||
| INFO = -22 | |||
| ELSE IF ( LDS < N ) THEN | |||
| INFO = -24 | |||
| END IF | |||
| ! | |||
| IF ( INFO == 0 ) THEN | |||
| ! Compute the minimal and the optimal workspace | |||
| ! requirements. Simulate running the code and | |||
| ! determine minimal and optimal sizes of the | |||
| ! workspace at any moment of the run. | |||
| IF ( N == 0 ) THEN | |||
| ! Quick return. All output except K is void. | |||
| ! INFO=1 signals the void input. | |||
| ! In case of a workspace query, the default | |||
| ! minimal workspace lengths are returned. | |||
| IF ( LQUERY ) THEN | |||
| IWORK(1) = 1 | |||
| RWORK(1) = 1 | |||
| ZWORK(1) = 2 | |||
| ZWORK(2) = 2 | |||
| ELSE | |||
| K = 0 | |||
| END IF | |||
| INFO = 1 | |||
| RETURN | |||
| END IF | |||
| IMINWR = 1 | |||
| MLRWRK = MAX(1,N) | |||
| MLWORK = 2 | |||
| OLWORK = 2 | |||
| SELECT CASE ( WHTSVD ) | |||
| CASE (1) | |||
| ! The following is specified as the minimal | |||
| ! length of WORK in the definition of CGESVD: | |||
| ! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
| MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
| MLWORK = MAX(MLWORK,MWRSVD) | |||
| MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N)) | |||
| IF ( LQUERY ) THEN | |||
| CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, & | |||
| B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 ) | |||
| LWRSVD = INT( ZWORK(1) ) | |||
| OLWORK = MAX(OLWORK,LWRSVD) | |||
| END IF | |||
| CASE (2) | |||
| ! The following is specified as the minimal | |||
| ! length of WORK in the definition of CGESDD: | |||
| ! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). | |||
| ! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) | |||
| ! In LAPACK 3.10.1 RWORK is defined differently. | |||
| ! Below we take max over the two versions. | |||
| ! IMINWR = 8*MIN(M,N) | |||
| MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
| MLWORK = MAX(MLWORK,MWRSDD) | |||
| IMINWR = 8*MIN(M,N) | |||
| MLRWRK = MAX( MLRWRK, N + & | |||
| MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), & | |||
| 5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), & | |||
| 2*MAX(M,N)*MIN(M,N)+ & | |||
| 2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
| IF ( LQUERY ) THEN | |||
| CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, & | |||
| LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 ) | |||
| LWRSDD = MAX(MWRSDD,INT( ZWORK(1) )) | |||
| OLWORK = MAX(OLWORK,LWRSDD) | |||
| END IF | |||
| CASE (3) | |||
| CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
| X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, & | |||
| IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 ) | |||
| IMINWR = IWORK(1) | |||
| MWRSVQ = INT(ZWORK(2)) | |||
| MLWORK = MAX(MLWORK,MWRSVQ) | |||
| MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1))) | |||
| IF ( LQUERY ) THEN | |||
| LWRSVQ = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,LWRSVQ) | |||
| END IF | |||
| CASE (4) | |||
| JSVOPT = 'J' | |||
| CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, & | |||
| N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
| ZWORK, -1, RDUMMY, -1, IWORK, INFO1 ) | |||
| IMINWR = IWORK(1) | |||
| MWRSVJ = INT(ZWORK(2)) | |||
| MLWORK = MAX(MLWORK,MWRSVJ) | |||
| MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1)))) | |||
| IF ( LQUERY ) THEN | |||
| LWRSVJ = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,LWRSVJ) | |||
| END IF | |||
| END SELECT | |||
| IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN | |||
| JOBZL = 'V' | |||
| ELSE | |||
| JOBZL = 'N' | |||
| END IF | |||
| ! Workspace calculation to the CGEEV call | |||
| MWRKEV = MAX( 1, 2*N ) | |||
| MLWORK = MAX(MLWORK,MWRKEV) | |||
| MLRWRK = MAX(MLRWRK,N+2*N) | |||
| IF ( LQUERY ) THEN | |||
| CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, & | |||
| W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL | |||
| LWRKEV = INT(ZWORK(1)) | |||
| OLWORK = MAX( OLWORK, LWRKEV ) | |||
| OLWORK = MAX( 2, OLWORK ) | |||
| END IF | |||
| ! | |||
| IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30 | |||
| IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28 | |||
| IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26 | |||
| END IF | |||
| ! | |||
| IF( INFO /= 0 ) THEN | |||
| CALL XERBLA( 'CGEDMD', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| ! Return minimal and optimal workspace sizes | |||
| IWORK(1) = IMINWR | |||
| RWORK(1) = MLRWRK | |||
| ZWORK(1) = MLWORK | |||
| ZWORK(2) = OLWORK | |||
| RETURN | |||
| END IF | |||
| !............................................................ | |||
| ! | |||
| OFL = SLAMCH('O')*SLAMCH('P') | |||
| SMALL = SLAMCH('S') | |||
| BADXY = .FALSE. | |||
| ! | |||
| ! <1> Optional scaling of the snapshots (columns of X, Y) | |||
| ! ========================================================== | |||
| IF ( SCCOLX ) THEN | |||
| ! The columns of X will be normalized. | |||
| ! To prevent overflows, the column norms of X are | |||
| ! carefully computed using CLASSQ. | |||
| K = 0 | |||
| DO i = 1, N | |||
| !WORK(i) = SCNRM2( M, X(1,i), 1 ) | |||
| SCALE = ZERO | |||
| CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM ) | |||
| IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN | |||
| K = 0 | |||
| INFO = -8 | |||
| CALL XERBLA('CGEDMD',-INFO) | |||
| END IF | |||
| IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN | |||
| ROOTSC = SQRT(SSUM) | |||
| IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
| ! Norm of X(:,i) overflows. First, X(:,i) | |||
| ! is scaled by | |||
| ! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. | |||
| ! Next, the norm of X(:,i) is stored without | |||
| ! overflow as WORK(i) = - SCALE * (ROOTSC/M), | |||
| ! the minus sign indicating the 1/M factor. | |||
| ! Scaling is performed without overflow, and | |||
| ! underflow may occur in the smallest entries | |||
| ! of X(:,i). The relative backward and forward | |||
| ! errors are small in the ell_2 norm. | |||
| CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
| M, 1, X(1,i), LDX, INFO2 ) | |||
| RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) ) | |||
| ELSE | |||
| ! X(:,i) will be scaled to unit 2-norm | |||
| RWORK(i) = SCALE * ROOTSC | |||
| CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
| X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
| ! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
| END IF | |||
| ELSE | |||
| RWORK(i) = ZERO | |||
| K = K + 1 | |||
| END IF | |||
| END DO | |||
| IF ( K == N ) THEN | |||
| ! All columns of X are zero. Return error code -8. | |||
| ! (the 8th input variable had an illegal value) | |||
| K = 0 | |||
| INFO = -8 | |||
| CALL XERBLA('CGEDMD',-INFO) | |||
| RETURN | |||
| END IF | |||
| DO i = 1, N | |||
| ! Now, apply the same scaling to the columns of Y. | |||
| IF ( RWORK(i) > ZERO ) THEN | |||
| CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL | |||
| ! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
| ELSE IF ( RWORK(i) < ZERO ) THEN | |||
| CALL CLASCL( 'G', 0, 0, -RWORK(i), & | |||
| ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
| ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i )) & | |||
| /= ZERO ) THEN | |||
| ! X(:,i) is zero vector. For consistency, | |||
| ! Y(:,i) should also be zero. If Y(:,i) is not | |||
| ! zero, then the data might be inconsistent or | |||
| ! corrupted. If JOBS == 'C', Y(:,i) is set to | |||
| ! zero and a warning flag is raised. | |||
| ! The computation continues but the | |||
| ! situation will be reported in the output. | |||
| BADXY = .TRUE. | |||
| IF ( LSAME(JOBS,'C')) & | |||
| CALL CSSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL | |||
| END IF | |||
| END DO | |||
| END IF | |||
| ! | |||
| IF ( SCCOLY ) THEN | |||
| ! The columns of Y will be normalized. | |||
| ! To prevent overflows, the column norms of Y are | |||
| ! carefully computed using CLASSQ. | |||
| DO i = 1, N | |||
| !RWORK(i) = SCNRM2( M, Y(1,i), 1 ) | |||
| SCALE = ZERO | |||
| CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM ) | |||
| IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN | |||
| K = 0 | |||
| INFO = -10 | |||
| CALL XERBLA('CGEDMD',-INFO) | |||
| END IF | |||
| IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN | |||
| ROOTSC = SQRT(SSUM) | |||
| IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
| ! Norm of Y(:,i) overflows. First, Y(:,i) | |||
| ! is scaled by | |||
| ! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. | |||
| ! Next, the norm of Y(:,i) is stored without | |||
| ! overflow as RWORK(i) = - SCALE * (ROOTSC/M), | |||
| ! the minus sign indicating the 1/M factor. | |||
| ! Scaling is performed without overflow, and | |||
| ! underflow may occur in the smallest entries | |||
| ! of Y(:,i). The relative backward and forward | |||
| ! errors are small in the ell_2 norm. | |||
| CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
| M, 1, Y(1,i), LDY, INFO2 ) | |||
| RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) ) | |||
| ELSE | |||
| ! Y(:,i) will be scaled to unit 2-norm | |||
| RWORK(i) = SCALE * ROOTSC | |||
| CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
| Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
| ! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
| END IF | |||
| ELSE | |||
| RWORK(i) = ZERO | |||
| END IF | |||
| END DO | |||
| DO i = 1, N | |||
| ! Now, apply the same scaling to the columns of X. | |||
| IF ( RWORK(i) > ZERO ) THEN | |||
| CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL | |||
| ! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
| ELSE IF ( RWORK(i) < ZERO ) THEN | |||
| CALL CLASCL( 'G', 0, 0, -RWORK(i), & | |||
| ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
| ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i )) & | |||
| /= ZERO ) THEN | |||
| ! Y(:,i) is zero vector. If X(:,i) is not | |||
| ! zero, then a warning flag is raised. | |||
| ! The computation continues but the | |||
| ! situation will be reported in the output. | |||
| BADXY = .TRUE. | |||
| END IF | |||
| END DO | |||
| END IF | |||
| ! | |||
| ! <2> SVD of the data snapshot matrix X. | |||
| ! ===================================== | |||
| ! The left singular vectors are stored in the array X. | |||
| ! The right singular vectors are in the array W. | |||
| ! The array W will later on contain the eigenvectors | |||
| ! of a Rayleigh quotient. | |||
| NUMRNK = N | |||
| SELECT CASE ( WHTSVD ) | |||
| CASE (1) | |||
| CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, & | |||
| LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
| T_OR_N = 'C' | |||
| CASE (2) | |||
| CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, & | |||
| LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL | |||
| T_OR_N = 'C' | |||
| CASE (3) | |||
| CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
| X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
| NUMRNK, IWORK, LIWORK, ZWORK, & | |||
| LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL | |||
| CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
| T_OR_N = 'C' | |||
| CASE (4) | |||
| CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, & | |||
| N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
| ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL | |||
| CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
| T_OR_N = 'N' | |||
| XSCL1 = RWORK(N+1) | |||
| XSCL2 = RWORK(N+2) | |||
| IF ( XSCL1 /= XSCL2 ) THEN | |||
| ! This is an exceptional situation. If the | |||
| ! data matrices are not scaled and the | |||
| ! largest singular value of X overflows. | |||
| ! In that case CGEJSV can return the SVD | |||
| ! in scaled form. The scaling factor can be used | |||
| ! to rescale the data (X and Y). | |||
| CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 ) | |||
| END IF | |||
| END SELECT | |||
| ! | |||
| IF ( INFO1 > 0 ) THEN | |||
| ! The SVD selected subroutine did not converge. | |||
| ! Return with an error code. | |||
| INFO = 2 | |||
| RETURN | |||
| END IF | |||
| ! | |||
| IF ( RWORK(1) == ZERO ) THEN | |||
| ! The largest computed singular value of (scaled) | |||
| ! X is zero. Return error code -8 | |||
| ! (the 8th input variable had an illegal value). | |||
| K = 0 | |||
| INFO = -8 | |||
| CALL XERBLA('CGEDMD',-INFO) | |||
| RETURN | |||
| END IF | |||
| ! | |||
| !<3> Determine the numerical rank of the data | |||
| ! snapshots matrix X. This depends on the | |||
| ! parameters NRNK and TOL. | |||
| SELECT CASE ( NRNK ) | |||
| CASE ( -1 ) | |||
| K = 1 | |||
| DO i = 2, NUMRNK | |||
| IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. & | |||
| ( RWORK(i) <= SMALL ) ) EXIT | |||
| K = K + 1 | |||
| END DO | |||
| CASE ( -2 ) | |||
| K = 1 | |||
| DO i = 1, NUMRNK-1 | |||
| IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. & | |||
| ( RWORK(i) <= SMALL ) ) EXIT | |||
| K = K + 1 | |||
| END DO | |||
| CASE DEFAULT | |||
| K = 1 | |||
| DO i = 2, NRNK | |||
| IF ( RWORK(i) <= SMALL ) EXIT | |||
| K = K + 1 | |||
| END DO | |||
| END SELECT | |||
| ! Now, U = X(1:M,1:K) is the SVD/POD basis for the | |||
| ! snapshot data in the input matrix X. | |||
| !<4> Compute the Rayleigh quotient S = U^H * A * U. | |||
| ! Depending on the requested outputs, the computation | |||
| ! is organized to compute additional auxiliary | |||
| ! matrices (for the residuals and refinements). | |||
| ! | |||
| ! In all formulas below, we need V_k*Sigma_k^(-1) | |||
| ! where either V_k is in W(1:N,1:K), or V_k^H is in | |||
| ! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). | |||
| IF ( LSAME(T_OR_N, 'N') ) THEN | |||
| DO i = 1, K | |||
| CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL | |||
| ! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC | |||
| END DO | |||
| ELSE | |||
| ! This non-unit stride access is due to the fact | |||
| ! that CGESVD, CGESVDQ and CGESDD return the | |||
| ! adjoint matrix of the right singular vectors. | |||
| !DO i = 1, K | |||
| ! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL | |||
| ! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC | |||
| !END DO | |||
| DO i = 1, K | |||
| RWORK(N+i) = ONE/RWORK(i) | |||
| END DO | |||
| DO j = 1, N | |||
| DO i = 1, K | |||
| W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j) | |||
| END DO | |||
| END DO | |||
| END IF | |||
| ! | |||
| IF ( WNTREF ) THEN | |||
| ! | |||
| ! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) | |||
| ! for computing the refined Ritz vectors | |||
| ! (optionally, outside CGEDMD). | |||
| CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, & | |||
| LDW, ZZERO, Z, LDZ ) ! BLAS CALL | |||
| ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T' | |||
| ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N' | |||
| ! | |||
| ! At this point Z contains | |||
| ! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and | |||
| ! this is needed for computing the residuals. | |||
| ! This matrix is returned in the array B and | |||
| ! it can be used to compute refined Ritz vectors. | |||
| CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL | |||
| ! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC | |||
| CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, & | |||
| LDZ, ZZERO, S, LDS ) ! BLAS CALL | |||
| ! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC | |||
| ! At this point S = U^H * A * U is the Rayleigh quotient. | |||
| ELSE | |||
| ! A * U(:,1:K) is not explicitly needed and the | |||
| ! computation is organized differently. The Rayleigh | |||
| ! quotient is computed more efficiently. | |||
| CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, & | |||
| ZZERO, Z, LDZ ) ! BLAS CALL | |||
| ! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC | |||
| ! | |||
| CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, & | |||
| LDW, ZZERO, S, LDS ) ! BLAS CALL | |||
| ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T' | |||
| ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N' | |||
| ! At this point S = U^H * A * U is the Rayleigh quotient. | |||
| ! If the residuals are requested, save scaled V_k into Z. | |||
| ! Recall that V_k or V_k^H is stored in W. | |||
| IF ( WNTRES .OR. WNTEX ) THEN | |||
| IF ( LSAME(T_OR_N, 'N') ) THEN | |||
| CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ ) | |||
| ELSE | |||
| CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ ) | |||
| END IF | |||
| END IF | |||
| END IF | |||
| ! | |||
| !<5> Compute the Ritz values and (if requested) the | |||
| ! right eigenvectors of the Rayleigh quotient. | |||
| ! | |||
| CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, & | |||
| LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
| ! | |||
| ! W(1:K,1:K) contains the eigenvectors of the Rayleigh | |||
| ! quotient. See the description of Z. | |||
| ! Also, see the description of CGEEV. | |||
| IF ( INFO1 > 0 ) THEN | |||
| ! CGEEV failed to compute the eigenvalues and | |||
| ! eigenvectors of the Rayleigh quotient. | |||
| INFO = 3 | |||
| RETURN | |||
| END IF | |||
| ! | |||
| ! <6> Compute the eigenvectors (if requested) and, | |||
| ! the residuals (if requested). | |||
| ! | |||
| IF ( WNTVEC .OR. WNTEX ) THEN | |||
| IF ( WNTRES ) THEN | |||
| IF ( WNTREF ) THEN | |||
| ! Here, if the refinement is requested, we have | |||
| ! A*U(:,1:K) already computed and stored in Z. | |||
| ! For the residuals, need Y = A * U(:,1;K) * W. | |||
| CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, & | |||
| LDW, ZZERO, Y, LDY ) ! BLAS CALL | |||
| ! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC | |||
| ! This frees Z; Y contains A * U(:,1:K) * W. | |||
| ELSE | |||
| ! Compute S = V_k * Sigma_k^(-1) * W, where | |||
| ! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z | |||
| CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
| W, LDW, ZZERO, S, LDS) | |||
| ! Then, compute Z = Y * S = | |||
| ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
| ! = A * U(:,1:K) * W(1:K,1:K) | |||
| CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
| LDS, ZZERO, Z, LDZ) | |||
| ! Save a copy of Z into Y and free Z for holding | |||
| ! the Ritz vectors. | |||
| CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY ) | |||
| IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
| END IF | |||
| ELSE IF ( WNTEX ) THEN | |||
| ! Compute S = V_k * Sigma_k^(-1) * W, where | |||
| ! V_k * Sigma_k^(-1) is stored in Z | |||
| CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
| W, LDW, ZZERO, S, LDS) | |||
| ! Then, compute Z = Y * S = | |||
| ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
| ! = A * U(:,1:K) * W(1:K,1:K) | |||
| CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
| LDS, ZZERO, B, LDB) | |||
| ! The above call replaces the following two calls | |||
| ! that were used in the developing-testing phase. | |||
| ! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
| ! LDS, ZZERO, Z, LDZ) | |||
| ! Save a copy of Z into Y and free Z for holding | |||
| ! the Ritz vectors. | |||
| ! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
| END IF | |||
| ! | |||
| ! Compute the Ritz vectors | |||
| IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, & | |||
| ZZERO, Z, LDZ ) ! BLAS CALL | |||
| ! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC | |||
| ! | |||
| IF ( WNTRES ) THEN | |||
| DO i = 1, K | |||
| CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL | |||
| ! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC | |||
| RES(i) = SCNRM2( M, Y(1,i), 1) ! BLAS CALL | |||
| END DO | |||
| END IF | |||
| END IF | |||
| ! | |||
| IF ( WHTSVD == 4 ) THEN | |||
| RWORK(N+1) = XSCL1 | |||
| RWORK(N+2) = XSCL2 | |||
| END IF | |||
| ! | |||
| ! Successful exit. | |||
| IF ( .NOT. BADXY ) THEN | |||
| INFO = 0 | |||
| ELSE | |||
| ! A warning on possible data inconsistency. | |||
| ! This should be a rare event. | |||
| INFO = 4 | |||
| END IF | |||
| !............................................................ | |||
| RETURN | |||
| ! ...... | |||
| END SUBROUTINE CGEDMD | |||
| @@ -0,0 +1,689 @@ | |||
| SUBROUTINE CGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
| WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
| LDY, NRNK, TOL, K, EIGS, & | |||
| Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, ZWORK, LZWORK, WORK, LWORK, & | |||
| IWORK, LIWORK, INFO ) | |||
| ! March 2023 | |||
| !..... | |||
| USE iso_fortran_env | |||
| IMPLICIT NONE | |||
| INTEGER, PARAMETER :: WP = real32 | |||
| !..... | |||
| ! Scalar arguments | |||
| CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
| JOBT, JOBF | |||
| INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
| LDY, NRNK, LDZ, LDB, LDV, & | |||
| LDS, LZWORK, LWORK, LIWORK | |||
| INTEGER, INTENT(OUT) :: INFO, K | |||
| REAL(KIND=WP), INTENT(IN) :: TOL | |||
| ! Array arguments | |||
| COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
| Z(LDZ,*), B(LDB,*), & | |||
| V(LDV,*), S(LDS,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
| INTEGER, INTENT(OUT) :: IWORK(*) | |||
| !..... | |||
| ! Purpose | |||
| ! ======= | |||
| ! CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
| ! a pair of data snapshot matrices, using a QR factorization | |||
| ! based compression of the data. For the input matrices | |||
| ! X and Y such that Y = A*X with an unaccessible matrix | |||
| ! A, CGEDMDQ computes a certain number of Ritz pairs of A using | |||
| ! the standard Rayleigh-Ritz extraction from a subspace of | |||
| ! range(X) that is determined using the leading left singular | |||
| ! vectors of X. Optionally, CGEDMDQ returns the residuals | |||
| ! of the computed Ritz pairs, the information needed for | |||
| ! a refinement of the Ritz vectors, or the eigenvectors of | |||
| ! the Exact DMD. | |||
| ! For further details see the references listed | |||
| ! below. For more details of the implementation see [3]. | |||
| ! | |||
| ! References | |||
| ! ========== | |||
| ! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
| ! and experimental data, | |||
| ! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
| ! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
| ! decompositions: analysis and enhancements, | |||
| ! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
| ! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
| ! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
| ! and LAPACK Working Note 298. | |||
| ! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
| ! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
| ! Theory and Applications, Journal of Computational | |||
| ! Dynamics 1(2), 391 -421, 2014. | |||
| ! | |||
| ! Developed and supported by: | |||
| ! =========================== | |||
| ! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
| ! University of Zagreb; drmac@math.hr | |||
| ! In cooperation with | |||
| ! AIMdyn Inc., Santa Barbara, CA. | |||
| ! and supported by | |||
| ! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
| ! for Nonstationary Processes from Near-Term, Limited | |||
| ! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
| ! - DARPA PAI project "Physics-Informed Machine Learning | |||
| ! Methodologies" Contract No: HR0011-18-9-0033 | |||
| ! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
| ! Framework for Space-Time Analysis of Process Dynamics" | |||
| ! Contract No: HR0011-16-C-0116 | |||
| ! Any opinions, findings and conclusions or recommendations | |||
| ! expressed in this material are those of the author and | |||
| ! do not necessarily reflect the views of the DARPA SBIR | |||
| ! Program Office. | |||
| !============================================================ | |||
| ! Distribution Statement A: | |||
| ! Approved for Public Release, Distribution Unlimited. | |||
| ! Cleared by DARPA on September 29, 2022 | |||
| !============================================================ | |||
| !...................................................................... | |||
| ! Arguments | |||
| ! ========= | |||
| ! JOBS (input) CHARACTER*1 | |||
| ! Determines whether the initial data snapshots are scaled | |||
| ! by a diagonal matrix. The data snapshots are the columns | |||
| ! of F. The leading N-1 columns of F are denoted X and the | |||
| ! trailing N-1 columns are denoted Y. | |||
| ! 'S' :: The data snapshots matrices X and Y are multiplied | |||
| ! with a diagonal matrix D so that X*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'C' :: The snapshots are scaled as with the 'S' option. | |||
| ! If it is found that an i-th column of X is zero | |||
| ! vector and the corresponding i-th column of Y is | |||
| ! non-zero, then the i-th column of Y is set to | |||
| ! zero and a warning flag is raised. | |||
| ! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
| ! by a diagonal matrix D so that Y*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'N' :: No data scaling. | |||
| !..... | |||
| ! JOBZ (input) CHARACTER*1 | |||
| ! Determines whether the eigenvectors (Koopman modes) will | |||
| ! be computed. | |||
| ! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
| ! and returned in the matrix Z. | |||
| ! See the description of Z. | |||
| ! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Z*V, where Z | |||
| ! is orthonormal and V contains the eigenvectors | |||
| ! of the corresponding Rayleigh quotient. | |||
| ! See the descriptions of F, V, Z. | |||
| ! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Q*Z, where Z | |||
| ! contains the eigenvectors of the compression of the | |||
| ! underlying discretised operator onto the span of | |||
| ! the data snapshots. See the descriptions of F, V, Z. | |||
| ! Q is from the inital QR facorization. | |||
| ! 'N' :: The eigenvectors are not computed. | |||
| !..... | |||
| ! JOBR (input) CHARACTER*1 | |||
| ! Determines whether to compute the residuals. | |||
| ! 'R' :: The residuals for the computed eigenpairs will | |||
| ! be computed and stored in the array RES. | |||
| ! See the description of RES. | |||
| ! For this option to be legal, JOBZ must be 'V'. | |||
| ! 'N' :: The residuals are not computed. | |||
| !..... | |||
| ! JOBQ (input) CHARACTER*1 | |||
| ! Specifies whether to explicitly compute and return the | |||
| ! unitary matrix from the QR factorization. | |||
| ! 'Q' :: The matrix Q of the QR factorization of the data | |||
| ! snapshot matrix is computed and stored in the | |||
| ! array F. See the description of F. | |||
| ! 'N' :: The matrix Q is not explicitly computed. | |||
| !..... | |||
| ! JOBT (input) CHARACTER*1 | |||
| ! Specifies whether to return the upper triangular factor | |||
| ! from the QR factorization. | |||
| ! 'R' :: The matrix R of the QR factorization of the data | |||
| ! snapshot matrix F is returned in the array Y. | |||
| ! See the description of Y and Further details. | |||
| ! 'N' :: The matrix R is not returned. | |||
| !..... | |||
| ! JOBF (input) CHARACTER*1 | |||
| ! Specifies whether to store information needed for post- | |||
| ! processing (e.g. computing refined Ritz vectors) | |||
| ! 'R' :: The matrix needed for the refinement of the Ritz | |||
| ! vectors is computed and stored in the array B. | |||
| ! See the description of B. | |||
| ! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
| ! computed and returned in the array B. See the | |||
| ! description of B. | |||
| ! 'N' :: No eigenvector refinement data is computed. | |||
| ! To be useful on exit, this option needs JOBQ='Q'. | |||
| !..... | |||
| ! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
| ! Allows for a selection of the SVD algorithm from the | |||
| ! LAPACK library. | |||
| ! 1 :: CGESVD (the QR SVD algorithm) | |||
| ! 2 :: CGESDD (the Divide and Conquer algorithm; if enough | |||
| ! workspace available, this is the fastest option) | |||
| ! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4 | |||
| ! are the most accurate options) | |||
| ! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
| ! are the most accurate options) | |||
| ! For the four methods above, a significant difference in | |||
| ! the accuracy of small singular values is possible if | |||
| ! the snapshots vary in norm so that X is severely | |||
| ! ill-conditioned. If small (smaller than EPS*||X||) | |||
| ! singular values are of interest and JOBS=='N', then | |||
| ! the options (3, 4) give the most accurate results, where | |||
| ! the option 4 is slightly better and with stronger | |||
| ! theoretical background. | |||
| ! If JOBS=='S', i.e. the columns of X will be normalized, | |||
| ! then all methods give nearly equally accurate results. | |||
| !..... | |||
| ! M (input) INTEGER, M >= 0 | |||
| ! The state space dimension (the number of rows of F). | |||
| !..... | |||
| ! N (input) INTEGER, 0 <= N <= M | |||
| ! The number of data snapshots from a single trajectory, | |||
| ! taken at equidistant discrete times. This is the | |||
| ! number of columns of F. | |||
| !..... | |||
| ! F (input/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! > On entry, | |||
| ! the columns of F are the sequence of data snapshots | |||
| ! from a single trajectory, taken at equidistant discrete | |||
| ! times. It is assumed that the column norms of F are | |||
| ! in the range of the normalized floating point numbers. | |||
| ! < On exit, | |||
| ! If JOBQ == 'Q', the array F contains the orthogonal | |||
| ! matrix/factor of the QR factorization of the initial | |||
| ! data snapshots matrix F. See the description of JOBQ. | |||
| ! If JOBQ == 'N', the entries in F strictly below the main | |||
| ! diagonal contain, column-wise, the information on the | |||
| ! Householder vectors, as returned by CGEQRF. The | |||
| ! remaining information to restore the orthogonal matrix | |||
| ! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)). | |||
| ! See the description of ZWORK. | |||
| !..... | |||
| ! LDF (input) INTEGER, LDF >= M | |||
| ! The leading dimension of the array F. | |||
| !..... | |||
| ! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array | |||
| ! X is used as workspace to hold representations of the | |||
| ! leading N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, the leading K columns of X contain the leading | |||
| ! K left singular vectors of the above described content | |||
| ! of X. To lift them to the space of the left singular | |||
| ! vectors U(:,1:K) of the input data, pre-multiply with the | |||
| ! Q factor from the initial QR factorization. | |||
| ! See the descriptions of F, K, V and Z. | |||
| !..... | |||
| ! LDX (input) INTEGER, LDX >= N | |||
| ! The leading dimension of the array X. | |||
| !..... | |||
| ! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array | |||
| ! Y is used as workspace to hold representations of the | |||
| ! trailing N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, | |||
| ! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
| ! triangular factor from the QR factorization of the data | |||
| ! snapshot matrix F. | |||
| !..... | |||
| ! LDY (input) INTEGER , LDY >= N | |||
| ! The leading dimension of the array Y. | |||
| !..... | |||
| ! NRNK (input) INTEGER | |||
| ! Determines the mode how to compute the numerical rank, | |||
| ! i.e. how to truncate small singular values of the input | |||
| ! matrix X. On input, if | |||
| ! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(1) | |||
| ! This option is recommended. | |||
| ! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(i-1) | |||
| ! This option is included for R&D purposes. | |||
| ! It requires highly accurate SVD, which | |||
| ! may not be feasible. | |||
| ! The numerical rank can be enforced by using positive | |||
| ! value of NRNK as follows: | |||
| ! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
| ! will be used. If the number of the computed nonzero | |||
| ! singular values is less than NRNK, then only those | |||
| ! nonzero values will be used and the actually used | |||
| ! dimension is less than NRNK. The actual number of | |||
| ! the nonzero singular values is returned in the variable | |||
| ! K. See the description of K. | |||
| !..... | |||
| ! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
| ! The tolerance for truncating small singular values. | |||
| ! See the description of NRNK. | |||
| !..... | |||
| ! K (output) INTEGER, 0 <= K <= N | |||
| ! The dimension of the SVD/POD basis for the leading N-1 | |||
| ! data snapshots (columns of F) and the number of the | |||
| ! computed Ritz pairs. The value of K is determined | |||
| ! according to the rule set by the parameters NRNK and | |||
| ! TOL. See the descriptions of NRNK and TOL. | |||
| !..... | |||
| ! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array | |||
| ! The leading K (K<=N-1) entries of EIGS contain | |||
| ! the computed eigenvalues (Ritz values). | |||
| ! See the descriptions of K, and Z. | |||
| !..... | |||
| ! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array | |||
| ! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
| ! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
| ! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
| ! Z*V, where Z contains orthonormal matrix (the product of | |||
| ! Q from the initial QR factorization and the SVD/POD_basis | |||
| ! returned by CGEDMD in X) and the second factor (the | |||
| ! eigenvectors of the Rayleigh quotient) is in the array V, | |||
| ! as returned by CGEDMD. That is, X(:,1:K)*V(:,i) | |||
| ! is an eigenvector corresponding to EIGS(i). The columns | |||
| ! of V(1:K,1:K) are the computed eigenvectors of the | |||
| ! K-by-K Rayleigh quotient. | |||
| ! See the descriptions of EIGS, X and V. | |||
| !..... | |||
| ! LDZ (input) INTEGER , LDZ >= M | |||
| ! The leading dimension of the array Z. | |||
| !..... | |||
| ! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! RES(1:K) contains the residuals for the K computed | |||
| ! Ritz pairs, | |||
| ! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
| ! See the description of EIGS and Z. | |||
| !..... | |||
| ! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
| ! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
| ! be used for computing the refined vectors; see further | |||
| ! details in the provided references. | |||
| ! If JOBF == 'E', B(1:N,1;K) contains | |||
| ! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
| ! Exact DMD, up to scaling by the inverse eigenvalues. | |||
| ! In both cases, the content of B can be lifted to the | |||
| ! original dimension of the input data by pre-multiplying | |||
| ! with the Q factor from the initial QR factorization. | |||
| ! Here A denotes a compression of the underlying operator. | |||
| ! See the descriptions of F and X. | |||
| ! If JOBF =='N', then B is not referenced. | |||
| !..... | |||
| ! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
| ! The leading dimension of the array B. | |||
| !..... | |||
| ! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
| ! On exit, V(1:K,1:K) V contains the K eigenvectors of | |||
| ! the Rayleigh quotient. The Ritz vectors | |||
| ! (returned in Z) are the product of Q from the initial QR | |||
| ! factorization (see the description of F) X (see the | |||
| ! description of X) and V. | |||
| !..... | |||
| ! LDV (input) INTEGER, LDV >= N-1 | |||
| ! The leading dimension of the array V. | |||
| !..... | |||
| ! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
| ! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
| ! quotient. This content is overwritten during | |||
| ! the eigenvalue decomposition by CGEEV. | |||
| ! See the description of K. | |||
| !..... | |||
| ! LDS (input) INTEGER, LDS >= N-1 | |||
| ! The leading dimension of the array S. | |||
| !..... | |||
| ! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array | |||
| ! On exit, | |||
| ! ZWORK(1:MIN(M,N)) contains the scalar factors of the | |||
| ! elementary reflectors as returned by CGEQRF of the | |||
| ! M-by-N input matrix F. | |||
| ! If the call to CGEDMDQ is only workspace query, then | |||
| ! ZWORK(1) contains the minimal complex workspace length and | |||
| ! ZWORK(2) is the optimal complex workspace length. | |||
| ! Hence, the length of work is at least 2. | |||
| ! See the description of LZWORK. | |||
| !..... | |||
| ! LZWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector ZWORK. | |||
| ! LZWORK is calculated as follows: | |||
| ! Let MLWQR = N (minimal workspace for CGEQRF[M,N]) | |||
| ! MLWDMD = minimal workspace for CGEDMD (see the | |||
| ! description of LWORK in CGEDMD) | |||
| ! MLWMQR = N (minimal workspace for | |||
| ! ZUNMQR['L','N',M,N,N]) | |||
| ! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N]) | |||
| ! MINMN = MIN(M,N) | |||
| ! Then | |||
| ! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD) | |||
| ! is further updated as follows: | |||
| ! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
| ! LZWORK = MAX( LZWORK, MINMN+MLWMQR ) | |||
| ! if JOBQ == 'Q' THEN | |||
| ! LZWORK = MAX( ZLWORK, MINMN+MLWGQR) | |||
| ! | |||
| !..... | |||
| ! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
| ! On exit, | |||
| ! WORK(1:N-1) contains the singular values of | |||
| ! the input submatrix F(1:M,1:N-1). | |||
| ! If the call to CGEDMDQ is only workspace query, then | |||
| ! WORK(1) contains the minimal workspace length and | |||
| ! WORK(2) is the optimal workspace length. hence, the | |||
| ! length of work is at least 2. | |||
| ! See the description of LWORK. | |||
| !..... | |||
| ! LWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector WORK. | |||
| ! LWORK is the same as in CGEDMD, because in CGEDMDQ | |||
| ! only CGEDMD requires real workspace for snapshots | |||
| ! of dimensions MIN(M,N)-by-(N-1). | |||
| ! If on entry LWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
| ! Workspace that is required only if WHTSVD equals | |||
| ! 2 , 3 or 4. (See the description of WHTSVD). | |||
| ! If on entry LWORK =-1 or LIWORK=-1, then the | |||
| ! minimal length of IWORK is computed and returned in | |||
| ! IWORK(1). See the description of LIWORK. | |||
| !..... | |||
| ! LIWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector IWORK. | |||
| ! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
| ! Let M1=MIN(M,N), N1=N-1. Then | |||
| ! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) | |||
| ! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) | |||
| ! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) | |||
| ! If on entry LIWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! INFO (output) INTEGER | |||
| ! -i < 0 :: On entry, the i-th argument had an | |||
| ! illegal value | |||
| ! = 0 :: Successful return. | |||
| ! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
| ! = 2 :: The SVD computation of X did not converge. | |||
| ! Suggestion: Check the input data and/or | |||
| ! repeat with different WHTSVD. | |||
| ! = 3 :: The computation of the eigenvalues did not | |||
| ! converge. | |||
| ! = 4 :: If data scaling was requested on input and | |||
| ! the procedure found inconsistency in the data | |||
| ! such that for some column index i, | |||
| ! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
| ! to zero if JOBS=='C'. The computation proceeds | |||
| ! with original or modified data and warning | |||
| ! flag is set with INFO=4. | |||
| !............................................................. | |||
| !............................................................. | |||
| ! Parameters | |||
| ! ~~~~~~~~~~ | |||
| REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
| REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
| ! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
| COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
| ! | |||
| ! Local scalars | |||
| ! ~~~~~~~~~~~~~ | |||
| INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, & | |||
| MLWDMD, MLWGQR, MLWMQR, MLWORK, & | |||
| MLWQR, OLWDMD, OLWGQR, OLWMQR, & | |||
| OLWORK, OLWQR | |||
| LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
| WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
| WNTVCQ, WNTREF, WNTEX | |||
| CHARACTER(LEN=1) :: JOBVL | |||
| ! | |||
| ! External functions (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~ | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| ! | |||
| ! External subroutines (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL CGEQRF, CLACPY, CLASET, CUNGQR, & | |||
| CUNMQR, XERBLA | |||
| ! External subroutines | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL CGEDMD | |||
| ! Intrinsic functions | |||
| ! ~~~~~~~~~~~~~~~~~~~ | |||
| INTRINSIC MAX, MIN, INT | |||
| !.......................................................... | |||
| ! | |||
| ! Test the input arguments | |||
| WNTRES = LSAME(JOBR,'R') | |||
| SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
| SCCOLY = LSAME(JOBS,'Y') | |||
| WNTVEC = LSAME(JOBZ,'V') | |||
| WNTVCF = LSAME(JOBZ,'F') | |||
| WNTVCQ = LSAME(JOBZ,'Q') | |||
| WNTREF = LSAME(JOBF,'R') | |||
| WNTEX = LSAME(JOBF,'E') | |||
| WANTQ = LSAME(JOBQ,'Q') | |||
| WNTTRF = LSAME(JOBT,'R') | |||
| MINMN = MIN(M,N) | |||
| INFO = 0 | |||
| LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) ) | |||
| ! | |||
| IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
| LSAME(JOBS,'N')) ) THEN | |||
| INFO = -1 | |||
| ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
| .OR. LSAME(JOBZ,'N')) ) THEN | |||
| INFO = -2 | |||
| ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
| ( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
| INFO = -3 | |||
| ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
| INFO = -4 | |||
| ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
| INFO = -5 | |||
| ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
| LSAME(JOBF,'N') ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
| (WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
| INFO = -7 | |||
| ELSE IF ( M < 0 ) THEN | |||
| INFO = -8 | |||
| ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
| INFO = -9 | |||
| ELSE IF ( LDF < M ) THEN | |||
| INFO = -11 | |||
| ELSE IF ( LDX < MINMN ) THEN | |||
| INFO = -13 | |||
| ELSE IF ( LDY < MINMN ) THEN | |||
| INFO = -15 | |||
| ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
| ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
| INFO = -16 | |||
| ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
| INFO = -17 | |||
| ELSE IF ( LDZ < M ) THEN | |||
| INFO = -21 | |||
| ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
| INFO = -24 | |||
| ELSE IF ( LDV < N-1 ) THEN | |||
| INFO = -26 | |||
| ELSE IF ( LDS < N-1 ) THEN | |||
| INFO = -28 | |||
| END IF | |||
| ! | |||
| IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN | |||
| JOBVL = 'V' | |||
| ELSE | |||
| JOBVL = 'N' | |||
| END IF | |||
| IF ( INFO == 0 ) THEN | |||
| ! Compute the minimal and the optimal workspace | |||
| ! requirements. Simulate running the code and | |||
| ! determine minimal and optimal sizes of the | |||
| ! workspace at any moment of the run. | |||
| IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
| ! All output except K is void. INFO=1 signals | |||
| ! the void input. In case of a workspace query, | |||
| ! the minimal workspace lengths are returned. | |||
| IF ( LQUERY ) THEN | |||
| IWORK(1) = 1 | |||
| WORK(1) = 2 | |||
| WORK(2) = 2 | |||
| ELSE | |||
| K = 0 | |||
| END IF | |||
| INFO = 1 | |||
| RETURN | |||
| END IF | |||
| MLRWRK = 2 | |||
| MLWORK = 2 | |||
| OLWORK = 2 | |||
| IMINWR = 1 | |||
| MLWQR = MAX(1,N) ! Minimal workspace length for CGEQRF. | |||
| MLWORK = MAX(MLWORK,MINMN + MLWQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL CGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, & | |||
| INFO1 ) | |||
| OLWQR = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN + OLWQR) | |||
| END IF | |||
| CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, ZWORK, LZWORK, WORK, -1, IWORK,& | |||
| LIWORK, INFO1 ) | |||
| MLWDMD = INT(ZWORK(1)) | |||
| MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
| MLRWRK = MAX(MLRWRK, INT(WORK(1))) | |||
| IMINWR = MAX(IMINWR, IWORK(1)) | |||
| IF ( LQUERY ) THEN | |||
| OLWDMD = INT(ZWORK(2)) | |||
| OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
| END IF | |||
| IF ( WNTVEC .OR. WNTVCF ) THEN | |||
| MLWMQR = MAX(1,N) | |||
| MLWORK = MAX(MLWORK, MINMN+MLWMQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL CUNMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
| ZWORK, Z, LDZ, ZWORK, -1, INFO1 ) | |||
| OLWMQR = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK, MINMN+OLWMQR) | |||
| END IF | |||
| END IF | |||
| IF ( WANTQ ) THEN | |||
| MLWGQR = MAX(1,N) | |||
| MLWORK = MAX(MLWORK, MINMN+MLWGQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
| ZWORK, -1, INFO1 ) | |||
| OLWGQR = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK, MINMN+OLWGQR) | |||
| END IF | |||
| END IF | |||
| IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34 | |||
| IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32 | |||
| IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30 | |||
| END IF | |||
| IF( INFO /= 0 ) THEN | |||
| CALL XERBLA( 'CGEDMDQ', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| ! Return minimal and optimal workspace sizes | |||
| IWORK(1) = IMINWR | |||
| ZWORK(1) = MLWORK | |||
| ZWORK(2) = OLWORK | |||
| WORK(1) = MLRWRK | |||
| WORK(2) = MLRWRK | |||
| RETURN | |||
| END IF | |||
| !..... | |||
| ! Initial QR factorization that is used to represent the | |||
| ! snapshots as elements of lower dimensional subspace. | |||
| ! For large scale computation with M >>N , at this place | |||
| ! one can use an out of core QRF. | |||
| ! | |||
| CALL CGEQRF( M, N, F, LDF, ZWORK, & | |||
| ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| ! | |||
| ! Define X and Y as the snapshots representations in the | |||
| ! orthogonal basis computed in the QR factorization. | |||
| ! X corresponds to the leading N-1 and Y to the trailing | |||
| ! N-1 snapshots. | |||
| CALL CLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX ) | |||
| CALL CLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
| CALL CLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
| IF ( M >= 3 ) THEN | |||
| CALL CLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, & | |||
| Y(3,1), LDY ) | |||
| END IF | |||
| ! | |||
| ! Compute the DMD of the projected snapshot pairs (X,Y) | |||
| CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, & | |||
| WORK, LWORK, IWORK, LIWORK, INFO1 ) | |||
| IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
| ! Return with error code. See CGEDMD for details. | |||
| INFO = INFO1 | |||
| RETURN | |||
| ELSE | |||
| INFO = INFO1 | |||
| END IF | |||
| ! | |||
| ! The Ritz vectors (Koopman modes) can be explicitly | |||
| ! formed or returned in factored form. | |||
| IF ( WNTVEC ) THEN | |||
| ! Compute the eigenvectors explicitly. | |||
| IF ( M > MINMN ) CALL CLASET( 'A', M-MINMN, K, ZZERO, & | |||
| ZZERO, Z(MINMN+1,1), LDZ ) | |||
| CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
| LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| ELSE IF ( WNTVCF ) THEN | |||
| ! Return the Ritz vectors (eigenvectors) in factored | |||
| ! form Z*V, where Z contains orthonormal matrix (the | |||
| ! product of Q from the initial QR factorization and | |||
| ! the SVD/POD_basis returned by CGEDMD in X) and the | |||
| ! second factor (the eigenvectors of the Rayleigh | |||
| ! quotient) is in the array V, as returned by CGEDMD. | |||
| CALL CLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
| IF ( M > N ) CALL CLASET( 'A', M-N, K, ZZERO, ZZERO, & | |||
| Z(N+1,1), LDZ ) | |||
| CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
| LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| END IF | |||
| ! | |||
| ! Some optional output variables: | |||
| ! | |||
| ! The upper triangular factor R in the initial QR | |||
| ! factorization is optionally returned in the array Y. | |||
| ! This is useful if this call to CGEDMDQ is to be | |||
| ! followed by a streaming DMD that is implemented in a | |||
| ! QR compressed form. | |||
| IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
| CALL CLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY ) | |||
| CALL CLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
| END IF | |||
| ! | |||
| ! The orthonormal/unitary factor Q in the initial QR | |||
| ! factorization is optionally returned in the array F. | |||
| ! Same as with the triangular factor above, this is | |||
| ! useful in a streaming DMD. | |||
| IF ( WANTQ ) THEN ! Q overwrites F | |||
| CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
| ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| END IF | |||
| ! | |||
| RETURN | |||
| ! | |||
| END SUBROUTINE CGEDMDQ | |||
| @@ -0,0 +1,704 @@ | |||
| SUBROUTINE DGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
| WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
| LDY, NRNK, TOL, K, REIG, IMEIG, & | |||
| Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, WORK, LWORK, IWORK, LIWORK, INFO ) | |||
| ! March 2023 | |||
| !..... | |||
| USE iso_fortran_env | |||
| IMPLICIT NONE | |||
| INTEGER, PARAMETER :: WP = real64 | |||
| !..... | |||
| ! Scalar arguments | |||
| CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
| JOBT, JOBF | |||
| INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
| LDY, NRNK, LDZ, LDB, LDV, & | |||
| LDS, LWORK, LIWORK | |||
| INTEGER, INTENT(OUT) :: INFO, K | |||
| REAL(KIND=WP), INTENT(IN) :: TOL | |||
| ! Array arguments | |||
| REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
| REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
| Z(LDZ,*), B(LDB,*), & | |||
| V(LDV,*), S(LDS,*) | |||
| REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), & | |||
| RES(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
| INTEGER, INTENT(OUT) :: IWORK(*) | |||
| !..... | |||
| ! Purpose | |||
| ! ======= | |||
| ! DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
| ! a pair of data snapshot matrices, using a QR factorization | |||
| ! based compression of the data. For the input matrices | |||
| ! X and Y such that Y = A*X with an unaccessible matrix | |||
| ! A, DGEDMDQ computes a certain number of Ritz pairs of A using | |||
| ! the standard Rayleigh-Ritz extraction from a subspace of | |||
| ! range(X) that is determined using the leading left singular | |||
| ! vectors of X. Optionally, DGEDMDQ returns the residuals | |||
| ! of the computed Ritz pairs, the information needed for | |||
| ! a refinement of the Ritz vectors, or the eigenvectors of | |||
| ! the Exact DMD. | |||
| ! For further details see the references listed | |||
| ! below. For more details of the implementation see [3]. | |||
| ! | |||
| ! References | |||
| ! ========== | |||
| ! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
| ! and experimental data, | |||
| ! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
| ! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
| ! decompositions: analysis and enhancements, | |||
| ! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
| ! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
| ! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
| ! and LAPACK Working Note 298. | |||
| ! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
| ! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
| ! Theory and Applications, Journal of Computational | |||
| ! Dynamics 1(2), 391 -421, 2014. | |||
| ! | |||
| ! Developed and supported by: | |||
| ! =========================== | |||
| ! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
| ! University of Zagreb; drmac@math.hr | |||
| ! In cooperation with | |||
| ! AIMdyn Inc., Santa Barbara, CA. | |||
| ! and supported by | |||
| ! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
| ! for Nonstationary Processes from Near-Term, Limited | |||
| ! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
| ! - DARPA PAI project "Physics-Informed Machine Learning | |||
| ! Methodologies" Contract No: HR0011-18-9-0033 | |||
| ! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
| ! Framework for Space-Time Analysis of Process Dynamics" | |||
| ! Contract No: HR0011-16-C-0116 | |||
| ! Any opinions, findings and conclusions or recommendations | |||
| ! expressed in this material are those of the author and | |||
| ! do not necessarily reflect the views of the DARPA SBIR | |||
| ! Program Office. | |||
| !============================================================ | |||
| ! Distribution Statement A: | |||
| ! Approved for Public Release, Distribution Unlimited. | |||
| ! Cleared by DARPA on September 29, 2022 | |||
| !============================================================ | |||
| !...................................................................... | |||
| ! Arguments | |||
| ! ========= | |||
| ! JOBS (input) CHARACTER*1 | |||
| ! Determines whether the initial data snapshots are scaled | |||
| ! by a diagonal matrix. The data snapshots are the columns | |||
| ! of F. The leading N-1 columns of F are denoted X and the | |||
| ! trailing N-1 columns are denoted Y. | |||
| ! 'S' :: The data snapshots matrices X and Y are multiplied | |||
| ! with a diagonal matrix D so that X*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'C' :: The snapshots are scaled as with the 'S' option. | |||
| ! If it is found that an i-th column of X is zero | |||
| ! vector and the corresponding i-th column of Y is | |||
| ! non-zero, then the i-th column of Y is set to | |||
| ! zero and a warning flag is raised. | |||
| ! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
| ! by a diagonal matrix D so that Y*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'N' :: No data scaling. | |||
| !..... | |||
| ! JOBZ (input) CHARACTER*1 | |||
| ! Determines whether the eigenvectors (Koopman modes) will | |||
| ! be computed. | |||
| ! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
| ! and returned in the matrix Z. | |||
| ! See the description of Z. | |||
| ! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Z*V, where Z | |||
| ! is orthonormal and V contains the eigenvectors | |||
| ! of the corresponding Rayleigh quotient. | |||
| ! See the descriptions of F, V, Z. | |||
| ! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Q*Z, where Z | |||
| ! contains the eigenvectors of the compression of the | |||
| ! underlying discretized operator onto the span of | |||
| ! the data snapshots. See the descriptions of F, V, Z. | |||
| ! Q is from the initial QR factorization. | |||
| ! 'N' :: The eigenvectors are not computed. | |||
| !..... | |||
| ! JOBR (input) CHARACTER*1 | |||
| ! Determines whether to compute the residuals. | |||
| ! 'R' :: The residuals for the computed eigenpairs will | |||
| ! be computed and stored in the array RES. | |||
| ! See the description of RES. | |||
| ! For this option to be legal, JOBZ must be 'V'. | |||
| ! 'N' :: The residuals are not computed. | |||
| !..... | |||
| ! JOBQ (input) CHARACTER*1 | |||
| ! Specifies whether to explicitly compute and return the | |||
| ! orthogonal matrix from the QR factorization. | |||
| ! 'Q' :: The matrix Q of the QR factorization of the data | |||
| ! snapshot matrix is computed and stored in the | |||
| ! array F. See the description of F. | |||
| ! 'N' :: The matrix Q is not explicitly computed. | |||
| !..... | |||
| ! JOBT (input) CHARACTER*1 | |||
| ! Specifies whether to return the upper triangular factor | |||
| ! from the QR factorization. | |||
| ! 'R' :: The matrix R of the QR factorization of the data | |||
| ! snapshot matrix F is returned in the array Y. | |||
| ! See the description of Y and Further details. | |||
| ! 'N' :: The matrix R is not returned. | |||
| !..... | |||
| ! JOBF (input) CHARACTER*1 | |||
| ! Specifies whether to store information needed for post- | |||
| ! processing (e.g. computing refined Ritz vectors) | |||
| ! 'R' :: The matrix needed for the refinement of the Ritz | |||
| ! vectors is computed and stored in the array B. | |||
| ! See the description of B. | |||
| ! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
| ! computed and returned in the array B. See the | |||
| ! description of B. | |||
| ! 'N' :: No eigenvector refinement data is computed. | |||
| ! To be useful on exit, this option needs JOBQ='Q'. | |||
| !..... | |||
| ! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
| ! Allows for a selection of the SVD algorithm from the | |||
| ! LAPACK library. | |||
| ! 1 :: DGESVD (the QR SVD algorithm) | |||
| ! 2 :: DGESDD (the Divide and Conquer algorithm; if enough | |||
| ! workspace available, this is the fastest option) | |||
| ! 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4 | |||
| ! are the most accurate options) | |||
| ! 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
| ! are the most accurate options) | |||
| ! For the four methods above, a significant difference in | |||
| ! the accuracy of small singular values is possible if | |||
| ! the snapshots vary in norm so that X is severely | |||
| ! ill-conditioned. If small (smaller than EPS*||X||) | |||
| ! singular values are of interest and JOBS=='N', then | |||
| ! the options (3, 4) give the most accurate results, where | |||
| ! the option 4 is slightly better and with stronger | |||
| ! theoretical background. | |||
| ! If JOBS=='S', i.e. the columns of X will be normalized, | |||
| ! then all methods give nearly equally accurate results. | |||
| !..... | |||
| ! M (input) INTEGER, M >= 0 | |||
| ! The state space dimension (the number of rows of F). | |||
| !..... | |||
| ! N (input) INTEGER, 0 <= N <= M | |||
| ! The number of data snapshots from a single trajectory, | |||
| ! taken at equidistant discrete times. This is the | |||
| ! number of columns of F. | |||
| !..... | |||
| ! F (input/output) REAL(KIND=WP) M-by-N array | |||
| ! > On entry, | |||
| ! the columns of F are the sequence of data snapshots | |||
| ! from a single trajectory, taken at equidistant discrete | |||
| ! times. It is assumed that the column norms of F are | |||
| ! in the range of the normalized floating point numbers. | |||
| ! < On exit, | |||
| ! If JOBQ == 'Q', the array F contains the orthogonal | |||
| ! matrix/factor of the QR factorization of the initial | |||
| ! data snapshots matrix F. See the description of JOBQ. | |||
| ! If JOBQ == 'N', the entries in F strictly below the main | |||
| ! diagonal contain, column-wise, the information on the | |||
| ! Householder vectors, as returned by DGEQRF. The | |||
| ! remaining information to restore the orthogonal matrix | |||
| ! of the initial QR factorization is stored in WORK(1:N). | |||
| ! See the description of WORK. | |||
| !..... | |||
| ! LDF (input) INTEGER, LDF >= M | |||
| ! The leading dimension of the array F. | |||
| !..... | |||
| ! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
| ! X is used as workspace to hold representations of the | |||
| ! leading N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, the leading K columns of X contain the leading | |||
| ! K left singular vectors of the above described content | |||
| ! of X. To lift them to the space of the left singular | |||
| ! vectors U(:,1:K)of the input data, pre-multiply with the | |||
| ! Q factor from the initial QR factorization. | |||
| ! See the descriptions of F, K, V and Z. | |||
| !..... | |||
| ! LDX (input) INTEGER, LDX >= N | |||
| ! The leading dimension of the array X. | |||
| !..... | |||
| ! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
| ! Y is used as workspace to hold representations of the | |||
| ! trailing N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, | |||
| ! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
| ! triangular factor from the QR factorization of the data | |||
| ! snapshot matrix F. | |||
| !..... | |||
| ! LDY (input) INTEGER , LDY >= N | |||
| ! The leading dimension of the array Y. | |||
| !..... | |||
| ! NRNK (input) INTEGER | |||
| ! Determines the mode how to compute the numerical rank, | |||
| ! i.e. how to truncate small singular values of the input | |||
| ! matrix X. On input, if | |||
| ! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(1) | |||
| ! This option is recommended. | |||
| ! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(i-1) | |||
| ! This option is included for R&D purposes. | |||
| ! It requires highly accurate SVD, which | |||
| ! may not be feasible. | |||
| ! The numerical rank can be enforced by using positive | |||
| ! value of NRNK as follows: | |||
| ! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
| ! will be used. If the number of the computed nonzero | |||
| ! singular values is less than NRNK, then only those | |||
| ! nonzero values will be used and the actually used | |||
| ! dimension is less than NRNK. The actual number of | |||
| ! the nonzero singular values is returned in the variable | |||
| ! K. See the description of K. | |||
| !..... | |||
| ! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
| ! The tolerance for truncating small singular values. | |||
| ! See the description of NRNK. | |||
| !..... | |||
| ! K (output) INTEGER, 0 <= K <= N | |||
| ! The dimension of the SVD/POD basis for the leading N-1 | |||
| ! data snapshots (columns of F) and the number of the | |||
| ! computed Ritz pairs. The value of K is determined | |||
| ! according to the rule set by the parameters NRNK and | |||
| ! TOL. See the descriptions of NRNK and TOL. | |||
| !..... | |||
| ! REIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! The leading K (K<=N) entries of REIG contain | |||
| ! the real parts of the computed eigenvalues | |||
| ! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
| ! See the descriptions of K, IMEIG, Z. | |||
| !..... | |||
| ! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! The leading K (K<N) entries of REIG contain | |||
| ! the imaginary parts of the computed eigenvalues | |||
| ! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
| ! The eigenvalues are determined as follows: | |||
| ! If IMEIG(i) == 0, then the corresponding eigenvalue is | |||
| ! real, LAMBDA(i) = REIG(i). | |||
| ! If IMEIG(i)>0, then the corresponding complex | |||
| ! conjugate pair of eigenvalues reads | |||
| ! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i) | |||
| ! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) | |||
| ! That is, complex conjugate pairs have consequtive | |||
| ! indices (i,i+1), with the positive imaginary part | |||
| ! listed first. | |||
| ! See the descriptions of K, REIG, Z. | |||
| !..... | |||
| ! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array | |||
| ! If JOBZ =='V' then | |||
| ! Z contains real Ritz vectors as follows: | |||
| ! If IMEIG(i)=0, then Z(:,i) is an eigenvector of | |||
| ! the i-th Ritz value. | |||
| ! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then | |||
| ! [Z(:,i) Z(:,i+1)] span an invariant subspace and | |||
| ! the Ritz values extracted from this subspace are | |||
| ! REIG(i) + sqrt(-1)*IMEIG(i) and | |||
| ! REIG(i) - sqrt(-1)*IMEIG(i). | |||
| ! The corresponding eigenvectors are | |||
| ! Z(:,i) + sqrt(-1)*Z(:,i+1) and | |||
| ! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. | |||
| ! If JOBZ == 'F', then the above descriptions hold for | |||
| ! the columns of Z*V, where the columns of V are the | |||
| ! eigenvectors of the K-by-K Rayleigh quotient, and Z is | |||
| ! orthonormal. The columns of V are similarly structured: | |||
| ! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if | |||
| ! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and | |||
| ! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1) | |||
| ! are the eigenvectors of LAMBDA(i), LAMBDA(i+1). | |||
| ! See the descriptions of REIG, IMEIG, X and V. | |||
| !..... | |||
| ! LDZ (input) INTEGER , LDZ >= M | |||
| ! The leading dimension of the array Z. | |||
| !..... | |||
| ! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! RES(1:K) contains the residuals for the K computed | |||
| ! Ritz pairs. | |||
| ! If LAMBDA(i) is real, then | |||
| ! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. | |||
| ! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair | |||
| ! then | |||
| ! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F | |||
| ! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] | |||
| ! [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. | |||
| ! It holds that | |||
| ! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2 | |||
| ! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 | |||
| ! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1) | |||
| ! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1) | |||
| ! See the description of Z. | |||
| !..... | |||
| ! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
| ! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
| ! be used for computing the refined vectors; see further | |||
| ! details in the provided references. | |||
| ! If JOBF == 'E', B(1:N,1;K) contains | |||
| ! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
| ! Exact DMD, up to scaling by the inverse eigenvalues. | |||
| ! In both cases, the content of B can be lifted to the | |||
| ! original dimension of the input data by pre-multiplying | |||
| ! with the Q factor from the initial QR factorization. | |||
| ! Here A denotes a compression of the underlying operator. | |||
| ! See the descriptions of F and X. | |||
| ! If JOBF =='N', then B is not referenced. | |||
| !..... | |||
| ! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
| ! The leading dimension of the array B. | |||
| !..... | |||
| ! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
| ! On exit, V(1:K,1:K) contains the K eigenvectors of | |||
| ! the Rayleigh quotient. The eigenvectors of a complex | |||
| ! conjugate pair of eigenvalues are returned in real form | |||
| ! as explained in the description of Z. The Ritz vectors | |||
| ! (returned in Z) are the product of X and V; see | |||
| ! the descriptions of X and Z. | |||
| !..... | |||
| ! LDV (input) INTEGER, LDV >= N-1 | |||
| ! The leading dimension of the array V. | |||
| !..... | |||
| ! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
| ! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
| ! quotient. This content is overwritten during | |||
| ! the eigenvalue decomposition by DGEEV. | |||
| ! See the description of K. | |||
| !..... | |||
| ! LDS (input) INTEGER, LDS >= N-1 | |||
| ! The leading dimension of the array S. | |||
| !..... | |||
| ! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
| ! On exit, | |||
| ! WORK(1:MIN(M,N)) contains the scalar factors of the | |||
| ! elementary reflectors as returned by DGEQRF of the | |||
| ! M-by-N input matrix F. | |||
| ! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of | |||
| ! the input submatrix F(1:M,1:N-1). | |||
| ! If the call to DGEDMDQ is only workspace query, then | |||
| ! WORK(1) contains the minimal workspace length and | |||
| ! WORK(2) is the optimal workspace length. Hence, the | |||
| ! length of work is at least 2. | |||
| ! See the description of LWORK. | |||
| !..... | |||
| ! LWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector WORK. | |||
| ! LWORK is calculated as follows: | |||
| ! Let MLWQR = N (minimal workspace for DGEQRF[M,N]) | |||
| ! MLWDMD = minimal workspace for DGEDMD (see the | |||
| ! description of LWORK in DGEDMD) for | |||
| ! snapshots of dimensions MIN(M,N)-by-(N-1) | |||
| ! MLWMQR = N (minimal workspace for | |||
| ! DORMQR['L','N',M,N,N]) | |||
| ! MLWGQR = N (minimal workspace for DORGQR[M,N,N]) | |||
| ! Then | |||
| ! LWORK = MAX(N+MLWQR, N+MLWDMD) | |||
| ! is updated as follows: | |||
| ! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
| ! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWMQR ) | |||
| ! if JOBQ == 'Q' THEN | |||
| ! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWGQR) | |||
| ! If on entry LWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
| ! Workspace that is required only if WHTSVD equals | |||
| ! 2 , 3 or 4. (See the description of WHTSVD). | |||
| ! If on entry LWORK =-1 or LIWORK=-1, then the | |||
| ! minimal length of IWORK is computed and returned in | |||
| ! IWORK(1). See the description of LIWORK. | |||
| !..... | |||
| ! LIWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector IWORK. | |||
| ! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
| ! Let M1=MIN(M,N), N1=N-1. Then | |||
| ! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) | |||
| ! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) | |||
| ! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) | |||
| ! If on entry LIWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! INFO (output) INTEGER | |||
| ! -i < 0 :: On entry, the i-th argument had an | |||
| ! illegal value | |||
| ! = 0 :: Successful return. | |||
| ! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
| ! = 2 :: The SVD computation of X did not converge. | |||
| ! Suggestion: Check the input data and/or | |||
| ! repeat with different WHTSVD. | |||
| ! = 3 :: The computation of the eigenvalues did not | |||
| ! converge. | |||
| ! = 4 :: If data scaling was requested on input and | |||
| ! the procedure found inconsistency in the data | |||
| ! such that for some column index i, | |||
| ! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
| ! to zero if JOBS=='C'. The computation proceeds | |||
| ! with original or modified data and warning | |||
| ! flag is set with INFO=4. | |||
| !............................................................. | |||
| !............................................................. | |||
| ! Parameters | |||
| ! ~~~~~~~~~~ | |||
| REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
| REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
| ! | |||
| ! Local scalars | |||
| ! ~~~~~~~~~~~~~ | |||
| INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, & | |||
| MLWMQR, MLWORK, MLWQR, MINMN, & | |||
| OLWDMD, OLWGQR, OLWMQR, OLWORK, & | |||
| OLWQR | |||
| LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
| WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
| WNTVCQ, WNTREF, WNTEX | |||
| CHARACTER(LEN=1) :: JOBVL | |||
| ! | |||
| ! Local array | |||
| ! ~~~~~~~~~~~ | |||
| REAL(KIND=WP) :: RDUMMY(2) | |||
| ! | |||
| ! External functions (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~ | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| ! | |||
| ! External subroutines (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL DGEMM | |||
| EXTERNAL DGEQRF, DLACPY, DLASET, DORGQR, & | |||
| DORMQR, XERBLA | |||
| ! External subroutines | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL DGEDMD | |||
| ! Intrinsic functions | |||
| ! ~~~~~~~~~~~~~~~~~~~ | |||
| INTRINSIC MAX, MIN, INT | |||
| !.......................................................... | |||
| ! | |||
| ! Test the input arguments | |||
| WNTRES = LSAME(JOBR,'R') | |||
| SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
| SCCOLY = LSAME(JOBS,'Y') | |||
| WNTVEC = LSAME(JOBZ,'V') | |||
| WNTVCF = LSAME(JOBZ,'F') | |||
| WNTVCQ = LSAME(JOBZ,'Q') | |||
| WNTREF = LSAME(JOBF,'R') | |||
| WNTEX = LSAME(JOBF,'E') | |||
| WANTQ = LSAME(JOBQ,'Q') | |||
| WNTTRF = LSAME(JOBT,'R') | |||
| MINMN = MIN(M,N) | |||
| INFO = 0 | |||
| LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) ) | |||
| ! | |||
| IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
| LSAME(JOBS,'N')) ) THEN | |||
| INFO = -1 | |||
| ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
| .OR. LSAME(JOBZ,'N')) ) THEN | |||
| INFO = -2 | |||
| ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
| ( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
| INFO = -3 | |||
| ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
| INFO = -4 | |||
| ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
| INFO = -5 | |||
| ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
| LSAME(JOBF,'N') ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
| (WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
| INFO = -7 | |||
| ELSE IF ( M < 0 ) THEN | |||
| INFO = -8 | |||
| ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
| INFO = -9 | |||
| ELSE IF ( LDF < M ) THEN | |||
| INFO = -11 | |||
| ELSE IF ( LDX < MINMN ) THEN | |||
| INFO = -13 | |||
| ELSE IF ( LDY < MINMN ) THEN | |||
| INFO = -15 | |||
| ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
| ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
| INFO = -16 | |||
| ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
| INFO = -17 | |||
| ELSE IF ( LDZ < M ) THEN | |||
| INFO = -22 | |||
| ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
| INFO = -25 | |||
| ELSE IF ( LDV < N-1 ) THEN | |||
| INFO = -27 | |||
| ELSE IF ( LDS < N-1 ) THEN | |||
| INFO = -29 | |||
| END IF | |||
| ! | |||
| IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN | |||
| JOBVL = 'V' | |||
| ELSE | |||
| JOBVL = 'N' | |||
| END IF | |||
| IF ( INFO == 0 ) THEN | |||
| ! Compute the minimal and the optimal workspace | |||
| ! requirements. Simulate running the code and | |||
| ! determine minimal and optimal sizes of the | |||
| ! workspace at any moment of the run. | |||
| IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
| ! All output except K is void. INFO=1 signals | |||
| ! the void input. In case of a workspace query, | |||
| ! the minimal workspace lengths are returned. | |||
| IF ( LQUERY ) THEN | |||
| IWORK(1) = 1 | |||
| WORK(1) = 2 | |||
| WORK(2) = 2 | |||
| ELSE | |||
| K = 0 | |||
| END IF | |||
| INFO = 1 | |||
| RETURN | |||
| END IF | |||
| MLWQR = MAX(1,N) ! Minimal workspace length for DGEQRF. | |||
| MLWORK = MINMN + MLWQR | |||
| IF ( LQUERY ) THEN | |||
| CALL DGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, & | |||
| INFO1 ) | |||
| OLWQR = INT(RDUMMY(1)) | |||
| OLWORK = MIN(M,N) + OLWQR | |||
| END IF | |||
| CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| REIG, IMEIG, Z, LDZ, RES, B, LDB, & | |||
| V, LDV, S, LDS, WORK, -1, IWORK, & | |||
| LIWORK, INFO1 ) | |||
| MLWDMD = INT(WORK(1)) | |||
| MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
| IMINWR = IWORK(1) | |||
| IF ( LQUERY ) THEN | |||
| OLWDMD = INT(WORK(2)) | |||
| OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
| END IF | |||
| IF ( WNTVEC .OR. WNTVCF ) THEN | |||
| MLWMQR = MAX(1,N) | |||
| MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL DORMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
| WORK, Z, LDZ, WORK, -1, INFO1 ) | |||
| OLWMQR = INT(WORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR) | |||
| END IF | |||
| END IF | |||
| IF ( WANTQ ) THEN | |||
| MLWGQR = N | |||
| MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
| WORK, -1, INFO1 ) | |||
| OLWGQR = INT(WORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR) | |||
| END IF | |||
| END IF | |||
| IMINWR = MAX( 1, IMINWR ) | |||
| MLWORK = MAX( 2, MLWORK ) | |||
| IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31 | |||
| IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33 | |||
| END IF | |||
| IF( INFO /= 0 ) THEN | |||
| CALL XERBLA( 'DGEDMDQ', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| ! Return minimal and optimal workspace sizes | |||
| IWORK(1) = IMINWR | |||
| WORK(1) = MLWORK | |||
| WORK(2) = OLWORK | |||
| RETURN | |||
| END IF | |||
| !..... | |||
| ! Initial QR factorization that is used to represent the | |||
| ! snapshots as elements of lower dimensional subspace. | |||
| ! For large scale computation with M >>N , at this place | |||
| ! one can use an out of core QRF. | |||
| ! | |||
| CALL DGEQRF( M, N, F, LDF, WORK, & | |||
| WORK(MINMN+1), LWORK-MINMN, INFO1 ) | |||
| ! | |||
| ! Define X and Y as the snapshots representations in the | |||
| ! orthogonal basis computed in the QR factorization. | |||
| ! X corresponds to the leading N-1 and Y to the trailing | |||
| ! N-1 snapshots. | |||
| CALL DLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX ) | |||
| CALL DLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
| CALL DLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
| IF ( M >= 3 ) THEN | |||
| CALL DLASET( 'L', MINMN-2, N-2, ZERO, ZERO, & | |||
| Y(3,1), LDY ) | |||
| END IF | |||
| ! | |||
| ! Compute the DMD of the projected snapshot pairs (X,Y) | |||
| CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| REIG, IMEIG, Z, LDZ, RES, B, LDB, V, & | |||
| LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, & | |||
| IWORK, LIWORK, INFO1 ) | |||
| IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
| ! Return with error code. See DGEDMD for details. | |||
| INFO = INFO1 | |||
| RETURN | |||
| ELSE | |||
| INFO = INFO1 | |||
| END IF | |||
| ! | |||
| ! The Ritz vectors (Koopman modes) can be explicitly | |||
| ! formed or returned in factored form. | |||
| IF ( WNTVEC ) THEN | |||
| ! Compute the eigenvectors explicitly. | |||
| IF ( M > MINMN ) CALL DLASET( 'A', M-MINMN, K, ZERO, & | |||
| ZERO, Z(MINMN+1,1), LDZ ) | |||
| CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
| LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
| ELSE IF ( WNTVCF ) THEN | |||
| ! Return the Ritz vectors (eigenvectors) in factored | |||
| ! form Z*V, where Z contains orthonormal matrix (the | |||
| ! product of Q from the initial QR factorization and | |||
| ! the SVD/POD_basis returned by DGEDMD in X) and the | |||
| ! second factor (the eigenvectors of the Rayleigh | |||
| ! quotient) is in the array V, as returned by DGEDMD. | |||
| CALL DLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
| IF ( M > N ) CALL DLASET( 'A', M-N, K, ZERO, ZERO, & | |||
| Z(N+1,1), LDZ ) | |||
| CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
| LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
| END IF | |||
| ! | |||
| ! Some optional output variables: | |||
| ! | |||
| ! The upper triangular factor R in the initial QR | |||
| ! factorization is optionally returned in the array Y. | |||
| ! This is useful if this call to DGEDMDQ is to be | |||
| ! followed by a streaming DMD that is implemented in a | |||
| ! QR compressed form. | |||
| IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
| CALL DLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY ) | |||
| CALL DLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
| END IF | |||
| ! | |||
| ! The orthonormal/orthogonal factor Q in the initial QR | |||
| ! factorization is optionally returned in the array F. | |||
| ! Same as with the triangular factor above, this is | |||
| ! useful in a streaming DMD. | |||
| IF ( WANTQ ) THEN ! Q overwrites F | |||
| CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
| WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
| END IF | |||
| ! | |||
| RETURN | |||
| ! | |||
| END SUBROUTINE DGEDMDQ | |||
| @@ -0,0 +1,703 @@ | |||
| SUBROUTINE SGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
| WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
| LDY, NRNK, TOL, K, REIG, IMEIG, & | |||
| Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, WORK, LWORK, IWORK, LIWORK, INFO ) | |||
| ! March 2023 | |||
| !..... | |||
| USE iso_fortran_env | |||
| IMPLICIT NONE | |||
| INTEGER, PARAMETER :: WP = real32 | |||
| !..... | |||
| ! Scalar arguments | |||
| CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
| JOBT, JOBF | |||
| INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
| LDY, NRNK, LDZ, LDB, LDV, & | |||
| LDS, LWORK, LIWORK | |||
| INTEGER, INTENT(OUT) :: INFO, K | |||
| REAL(KIND=WP), INTENT(IN) :: TOL | |||
| ! Array arguments | |||
| REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
| REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
| Z(LDZ,*), B(LDB,*), & | |||
| V(LDV,*), S(LDS,*) | |||
| REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), & | |||
| RES(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
| INTEGER, INTENT(OUT) :: IWORK(*) | |||
| !..... | |||
| ! Purpose | |||
| ! ======= | |||
| ! SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
| ! a pair of data snapshot matrices, using a QR factorization | |||
| ! based compression of the data. For the input matrices | |||
| ! X and Y such that Y = A*X with an unaccessible matrix | |||
| ! A, SGEDMDQ computes a certain number of Ritz pairs of A using | |||
| ! the standard Rayleigh-Ritz extraction from a subspace of | |||
| ! range(X) that is determined using the leading left singular | |||
| ! vectors of X. Optionally, SGEDMDQ returns the residuals | |||
| ! of the computed Ritz pairs, the information needed for | |||
| ! a refinement of the Ritz vectors, or the eigenvectors of | |||
| ! the Exact DMD. | |||
| ! For further details see the references listed | |||
| ! below. For more details of the implementation see [3]. | |||
| ! | |||
| ! References | |||
| ! ========== | |||
| ! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
| ! and experimental data, | |||
| ! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
| ! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
| ! decompositions: analysis and enhancements, | |||
| ! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
| ! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
| ! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
| ! and LAPACK Working Note 298. | |||
| ! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
| ! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
| ! Theory and Applications, Journal of Computational | |||
| ! Dynamics 1(2), 391 -421, 2014. | |||
| ! | |||
| ! Developed and supported by: | |||
| ! =========================== | |||
| ! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
| ! University of Zagreb; drmac@math.hr | |||
| ! In cooperation with | |||
| ! AIMdyn Inc., Santa Barbara, CA. | |||
| ! and supported by | |||
| ! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
| ! for Nonstationary Processes from Near-Term, Limited | |||
| ! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
| ! - DARPA PAI project "Physics-Informed Machine Learning | |||
| ! Methodologies" Contract No: HR0011-18-9-0033 | |||
| ! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
| ! Framework for Space-Time Analysis of Process Dynamics" | |||
| ! Contract No: HR0011-16-C-0116 | |||
| ! Any opinions, findings and conclusions or recommendations | |||
| ! expressed in this material are those of the author and | |||
| ! do not necessarily reflect the views of the DARPA SBIR | |||
| ! Program Office. | |||
| !============================================================ | |||
| ! Distribution Statement A: | |||
| ! Approved for Public Release, Distribution Unlimited. | |||
| ! Cleared by DARPA on September 29, 2022 | |||
| !============================================================ | |||
| !...................................................................... | |||
| ! Arguments | |||
| ! ========= | |||
| ! JOBS (input) CHARACTER*1 | |||
| ! Determines whether the initial data snapshots are scaled | |||
| ! by a diagonal matrix. The data snapshots are the columns | |||
| ! of F. The leading N-1 columns of F are denoted X and the | |||
| ! trailing N-1 columns are denoted Y. | |||
| ! 'S' :: The data snapshots matrices X and Y are multiplied | |||
| ! with a diagonal matrix D so that X*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'C' :: The snapshots are scaled as with the 'S' option. | |||
| ! If it is found that an i-th column of X is zero | |||
| ! vector and the corresponding i-th column of Y is | |||
| ! non-zero, then the i-th column of Y is set to | |||
| ! zero and a warning flag is raised. | |||
| ! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
| ! by a diagonal matrix D so that Y*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'N' :: No data scaling. | |||
| !..... | |||
| ! JOBZ (input) CHARACTER*1 | |||
| ! Determines whether the eigenvectors (Koopman modes) will | |||
| ! be computed. | |||
| ! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
| ! and returned in the matrix Z. | |||
| ! See the description of Z. | |||
| ! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Z*V, where Z | |||
| ! is orthonormal and V contains the eigenvectors | |||
| ! of the corresponding Rayleigh quotient. | |||
| ! See the descriptions of F, V, Z. | |||
| ! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Q*Z, where Z | |||
| ! contains the eigenvectors of the compression of the | |||
| ! underlying discretized operator onto the span of | |||
| ! the data snapshots. See the descriptions of F, V, Z. | |||
| ! Q is from the initial QR factorization. | |||
| ! 'N' :: The eigenvectors are not computed. | |||
| !..... | |||
| ! JOBR (input) CHARACTER*1 | |||
| ! Determines whether to compute the residuals. | |||
| ! 'R' :: The residuals for the computed eigenpairs will | |||
| ! be computed and stored in the array RES. | |||
| ! See the description of RES. | |||
| ! For this option to be legal, JOBZ must be 'V'. | |||
| ! 'N' :: The residuals are not computed. | |||
| !..... | |||
| ! JOBQ (input) CHARACTER*1 | |||
| ! Specifies whether to explicitly compute and return the | |||
| ! orthogonal matrix from the QR factorization. | |||
| ! 'Q' :: The matrix Q of the QR factorization of the data | |||
| ! snapshot matrix is computed and stored in the | |||
| ! array F. See the description of F. | |||
| ! 'N' :: The matrix Q is not explicitly computed. | |||
| !..... | |||
| ! JOBT (input) CHARACTER*1 | |||
| ! Specifies whether to return the upper triangular factor | |||
| ! from the QR factorization. | |||
| ! 'R' :: The matrix R of the QR factorization of the data | |||
| ! snapshot matrix F is returned in the array Y. | |||
| ! See the description of Y and Further details. | |||
| ! 'N' :: The matrix R is not returned. | |||
| !..... | |||
| ! JOBF (input) CHARACTER*1 | |||
| ! Specifies whether to store information needed for post- | |||
| ! processing (e.g. computing refined Ritz vectors) | |||
| ! 'R' :: The matrix needed for the refinement of the Ritz | |||
| ! vectors is computed and stored in the array B. | |||
| ! See the description of B. | |||
| ! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
| ! computed and returned in the array B. See the | |||
| ! description of B. | |||
| ! 'N' :: No eigenvector refinement data is computed. | |||
| ! To be useful on exit, this option needs JOBQ='Q'. | |||
| !..... | |||
| ! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
| ! Allows for a selection of the SVD algorithm from the | |||
| ! LAPACK library. | |||
| ! 1 :: SGESVD (the QR SVD algorithm) | |||
| ! 2 :: SGESDD (the Divide and Conquer algorithm; if enough | |||
| ! workspace available, this is the fastest option) | |||
| ! 3 :: SGESVDQ (the preconditioned QR SVD ; this and 4 | |||
| ! are the most accurate options) | |||
| ! 4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
| ! are the most accurate options) | |||
| ! For the four methods above, a significant difference in | |||
| ! the accuracy of small singular values is possible if | |||
| ! the snapshots vary in norm so that X is severely | |||
| ! ill-conditioned. If small (smaller than EPS*||X||) | |||
| ! singular values are of interest and JOBS=='N', then | |||
| ! the options (3, 4) give the most accurate results, where | |||
| ! the option 4 is slightly better and with stronger | |||
| ! theoretical background. | |||
| ! If JOBS=='S', i.e. the columns of X will be normalized, | |||
| ! then all methods give nearly equally accurate results. | |||
| !..... | |||
| ! M (input) INTEGER, M >= 0 | |||
| ! The state space dimension (the number of rows of F) | |||
| !..... | |||
| ! N (input) INTEGER, 0 <= N <= M | |||
| ! The number of data snapshots from a single trajectory, | |||
| ! taken at equidistant discrete times. This is the | |||
| ! number of columns of F. | |||
| !..... | |||
| ! F (input/output) REAL(KIND=WP) M-by-N array | |||
| ! > On entry, | |||
| ! the columns of F are the sequence of data snapshots | |||
| ! from a single trajectory, taken at equidistant discrete | |||
| ! times. It is assumed that the column norms of F are | |||
| ! in the range of the normalized floating point numbers. | |||
| ! < On exit, | |||
| ! If JOBQ == 'Q', the array F contains the orthogonal | |||
| ! matrix/factor of the QR factorization of the initial | |||
| ! data snapshots matrix F. See the description of JOBQ. | |||
| ! If JOBQ == 'N', the entries in F strictly below the main | |||
| ! diagonal contain, column-wise, the information on the | |||
| ! Householder vectors, as returned by SGEQRF. The | |||
| ! remaining information to restore the orthogonal matrix | |||
| ! of the initial QR factorization is stored in WORK(1:N). | |||
| ! See the description of WORK. | |||
| !..... | |||
| ! LDF (input) INTEGER, LDF >= M | |||
| ! The leading dimension of the array F. | |||
| !..... | |||
| ! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
| ! X is used as workspace to hold representations of the | |||
| ! leading N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, the leading K columns of X contain the leading | |||
| ! K left singular vectors of the above described content | |||
| ! of X. To lift them to the space of the left singular | |||
| ! vectors U(:,1:K)of the input data, pre-multiply with the | |||
| ! Q factor from the initial QR factorization. | |||
| ! See the descriptions of F, K, V and Z. | |||
| !..... | |||
| ! LDX (input) INTEGER, LDX >= N | |||
| ! The leading dimension of the array X | |||
| !..... | |||
| ! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
| ! Y is used as workspace to hold representations of the | |||
| ! trailing N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, | |||
| ! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
| ! triangular factor from the QR factorization of the data | |||
| ! snapshot matrix F. | |||
| !..... | |||
| ! LDY (input) INTEGER , LDY >= N | |||
| ! The leading dimension of the array Y | |||
| !..... | |||
| ! NRNK (input) INTEGER | |||
| ! Determines the mode how to compute the numerical rank, | |||
| ! i.e. how to truncate small singular values of the input | |||
| ! matrix X. On input, if | |||
| ! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(1) | |||
| ! This option is recommended. | |||
| ! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(i-1) | |||
| ! This option is included for R&D purposes. | |||
| ! It requires highly accurate SVD, which | |||
| ! may not be feasible. | |||
| ! The numerical rank can be enforced by using positive | |||
| ! value of NRNK as follows: | |||
| ! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
| ! will be used. If the number of the computed nonzero | |||
| ! singular values is less than NRNK, then only those | |||
| ! nonzero values will be used and the actually used | |||
| ! dimension is less than NRNK. The actual number of | |||
| ! the nonzero singular values is returned in the variable | |||
| ! K. See the description of K. | |||
| !..... | |||
| ! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
| ! The tolerance for truncating small singular values. | |||
| ! See the description of NRNK. | |||
| !..... | |||
| ! K (output) INTEGER, 0 <= K <= N | |||
| ! The dimension of the SVD/POD basis for the leading N-1 | |||
| ! data snapshots (columns of F) and the number of the | |||
| ! computed Ritz pairs. The value of K is determined | |||
| ! according to the rule set by the parameters NRNK and | |||
| ! TOL. See the descriptions of NRNK and TOL. | |||
| !..... | |||
| ! REIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! The leading K (K<=N) entries of REIG contain | |||
| ! the real parts of the computed eigenvalues | |||
| ! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
| ! See the descriptions of K, IMEIG, Z. | |||
| !..... | |||
| ! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! The leading K (K<N) entries of REIG contain | |||
| ! the imaginary parts of the computed eigenvalues | |||
| ! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
| ! The eigenvalues are determined as follows: | |||
| ! If IMEIG(i) == 0, then the corresponding eigenvalue is | |||
| ! real, LAMBDA(i) = REIG(i). | |||
| ! If IMEIG(i)>0, then the corresponding complex | |||
| ! conjugate pair of eigenvalues reads | |||
| ! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i) | |||
| ! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) | |||
| ! That is, complex conjugate pairs have consecutive | |||
| ! indices (i,i+1), with the positive imaginary part | |||
| ! listed first. | |||
| ! See the descriptions of K, REIG, Z. | |||
| !..... | |||
| ! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array | |||
| ! If JOBZ =='V' then | |||
| ! Z contains real Ritz vectors as follows: | |||
| ! If IMEIG(i)=0, then Z(:,i) is an eigenvector of | |||
| ! the i-th Ritz value. | |||
| ! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then | |||
| ! [Z(:,i) Z(:,i+1)] span an invariant subspace and | |||
| ! the Ritz values extracted from this subspace are | |||
| ! REIG(i) + sqrt(-1)*IMEIG(i) and | |||
| ! REIG(i) - sqrt(-1)*IMEIG(i). | |||
| ! The corresponding eigenvectors are | |||
| ! Z(:,i) + sqrt(-1)*Z(:,i+1) and | |||
| ! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. | |||
| ! If JOBZ == 'F', then the above descriptions hold for | |||
| ! the columns of Z*V, where the columns of V are the | |||
| ! eigenvectors of the K-by-K Rayleigh quotient, and Z is | |||
| ! orthonormal. The columns of V are similarly structured: | |||
| ! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if | |||
| ! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and | |||
| ! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1) | |||
| ! are the eigenvectors of LAMBDA(i), LAMBDA(i+1). | |||
| ! See the descriptions of REIG, IMEIG, X and V. | |||
| !..... | |||
| ! LDZ (input) INTEGER , LDZ >= M | |||
| ! The leading dimension of the array Z. | |||
| !..... | |||
| ! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! RES(1:K) contains the residuals for the K computed | |||
| ! Ritz pairs. | |||
| ! If LAMBDA(i) is real, then | |||
| ! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. | |||
| ! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair | |||
| ! then | |||
| ! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F | |||
| ! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] | |||
| ! [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. | |||
| ! It holds that | |||
| ! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2 | |||
| ! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 | |||
| ! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1) | |||
| ! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1) | |||
| ! See the description of Z. | |||
| !..... | |||
| ! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
| ! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
| ! be used for computing the refined vectors; see further | |||
| ! details in the provided references. | |||
| ! If JOBF == 'E', B(1:N,1;K) contains | |||
| ! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
| ! Exact DMD, up to scaling by the inverse eigenvalues. | |||
| ! In both cases, the content of B can be lifted to the | |||
| ! original dimension of the input data by pre-multiplying | |||
| ! with the Q factor from the initial QR factorization. | |||
| ! Here A denotes a compression of the underlying operator. | |||
| ! See the descriptions of F and X. | |||
| ! If JOBF =='N', then B is not referenced. | |||
| !..... | |||
| ! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
| ! The leading dimension of the array B. | |||
| !..... | |||
| ! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
| ! On exit, V(1:K,1:K) contains the K eigenvectors of | |||
| ! the Rayleigh quotient. The eigenvectors of a complex | |||
| ! conjugate pair of eigenvalues are returned in real form | |||
| ! as explained in the description of Z. The Ritz vectors | |||
| ! (returned in Z) are the product of X and V; see | |||
| ! the descriptions of X and Z. | |||
| !..... | |||
| ! LDV (input) INTEGER, LDV >= N-1 | |||
| ! The leading dimension of the array V. | |||
| !..... | |||
| ! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
| ! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
| ! quotient. This content is overwritten during | |||
| ! the eigenvalue decomposition by SGEEV. | |||
| ! See the description of K. | |||
| !..... | |||
| ! LDS (input) INTEGER, LDS >= N-1 | |||
| ! The leading dimension of the array S. | |||
| !..... | |||
| ! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
| ! On exit, | |||
| ! WORK(1:MIN(M,N)) contains the scalar factors of the | |||
| ! elementary reflectors as returned by SGEQRF of the | |||
| ! M-by-N input matrix F. | |||
| ! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of | |||
| ! the input submatrix F(1:M,1:N-1). | |||
| ! If the call to SGEDMDQ is only workspace query, then | |||
| ! WORK(1) contains the minimal workspace length and | |||
| ! WORK(2) is the optimal workspace length. Hence, the | |||
| ! length of work is at least 2. | |||
| ! See the description of LWORK. | |||
| !..... | |||
| ! LWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector WORK. | |||
| ! LWORK is calculated as follows: | |||
| ! Let MLWQR = N (minimal workspace for SGEQRF[M,N]) | |||
| ! MLWDMD = minimal workspace for SGEDMD (see the | |||
| ! description of LWORK in SGEDMD) for | |||
| ! snapshots of dimensions MIN(M,N)-by-(N-1) | |||
| ! MLWMQR = N (minimal workspace for | |||
| ! SORMQR['L','N',M,N,N]) | |||
| ! MLWGQR = N (minimal workspace for SORGQR[M,N,N]) | |||
| ! Then | |||
| ! LWORK = MAX(N+MLWQR, N+MLWDMD) | |||
| ! is updated as follows: | |||
| ! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
| ! LWORK = MAX( LWORK,MIN(M,N)+N-1 +MLWMQR ) | |||
| ! if JOBQ == 'Q' THEN | |||
| ! LWORK = MAX( LWORK,MIN(M,N)+N-1+MLWGQR) | |||
| ! If on entry LWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
| ! Workspace that is required only if WHTSVD equals | |||
| ! 2 , 3 or 4. (See the description of WHTSVD). | |||
| ! If on entry LWORK =-1 or LIWORK=-1, then the | |||
| ! minimal length of IWORK is computed and returned in | |||
| ! IWORK(1). See the description of LIWORK. | |||
| !..... | |||
| ! LIWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector IWORK. | |||
| ! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
| ! Let M1=MIN(M,N), N1=N-1. Then | |||
| ! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) | |||
| ! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) | |||
| ! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) | |||
| ! If on entry LIWORK = -1, then a worskpace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! INFO (output) INTEGER | |||
| ! -i < 0 :: On entry, the i-th argument had an | |||
| ! illegal value | |||
| ! = 0 :: Successful return. | |||
| ! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
| ! = 2 :: The SVD computation of X did not converge. | |||
| ! Suggestion: Check the input data and/or | |||
| ! repeat with different WHTSVD. | |||
| ! = 3 :: The computation of the eigenvalues did not | |||
| ! converge. | |||
| ! = 4 :: If data scaling was requested on input and | |||
| ! the procedure found inconsistency in the data | |||
| ! such that for some column index i, | |||
| ! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
| ! to zero if JOBS=='C'. The computation proceeds | |||
| ! with original or modified data and warning | |||
| ! flag is set with INFO=4. | |||
| !............................................................. | |||
| !............................................................. | |||
| ! Parameters | |||
| ! ~~~~~~~~~~ | |||
| REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
| REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
| ! | |||
| ! Local scalars | |||
| ! ~~~~~~~~~~~~~ | |||
| INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, & | |||
| MLWMQR, MLWORK, MLWQR, MINMN, & | |||
| OLWDMD, OLWGQR, OLWMQR, OLWORK, & | |||
| OLWQR | |||
| LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
| WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
| WNTVCQ, WNTREF, WNTEX | |||
| CHARACTER(LEN=1) :: JOBVL | |||
| ! | |||
| ! Local array | |||
| ! ~~~~~~~~~~~ | |||
| REAL(KIND=WP) :: RDUMMY(2) | |||
| ! | |||
| ! External functions (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~ | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| ! | |||
| ! External subroutines (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL SGEMM | |||
| EXTERNAL SGEQRF, SLACPY, SLASET, SORGQR, & | |||
| SORMQR, XERBLA | |||
| ! External subroutines | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL SGEDMD | |||
| ! Intrinsic functions | |||
| ! ~~~~~~~~~~~~~~~~~~~ | |||
| INTRINSIC MAX, MIN, INT | |||
| !.......................................................... | |||
| ! | |||
| ! Test the input arguments | |||
| WNTRES = LSAME(JOBR,'R') | |||
| SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
| SCCOLY = LSAME(JOBS,'Y') | |||
| WNTVEC = LSAME(JOBZ,'V') | |||
| WNTVCF = LSAME(JOBZ,'F') | |||
| WNTVCQ = LSAME(JOBZ,'Q') | |||
| WNTREF = LSAME(JOBF,'R') | |||
| WNTEX = LSAME(JOBF,'E') | |||
| WANTQ = LSAME(JOBQ,'Q') | |||
| WNTTRF = LSAME(JOBT,'R') | |||
| MINMN = MIN(M,N) | |||
| INFO = 0 | |||
| LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) ) | |||
| ! | |||
| IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. LSAME(JOBS,'N')) ) THEN | |||
| INFO = -1 | |||
| ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
| .OR. LSAME(JOBZ,'N')) ) THEN | |||
| INFO = -2 | |||
| ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
| ( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
| INFO = -3 | |||
| ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
| INFO = -4 | |||
| ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
| INFO = -5 | |||
| ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
| LSAME(JOBF,'N') ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
| (WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
| INFO = -7 | |||
| ELSE IF ( M < 0 ) THEN | |||
| INFO = -8 | |||
| ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
| INFO = -9 | |||
| ELSE IF ( LDF < M ) THEN | |||
| INFO = -11 | |||
| ELSE IF ( LDX < MINMN ) THEN | |||
| INFO = -13 | |||
| ELSE IF ( LDY < MINMN ) THEN | |||
| INFO = -15 | |||
| ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
| ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
| INFO = -16 | |||
| ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
| INFO = -17 | |||
| ELSE IF ( LDZ < M ) THEN | |||
| INFO = -22 | |||
| ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
| INFO = -25 | |||
| ELSE IF ( LDV < N-1 ) THEN | |||
| INFO = -27 | |||
| ELSE IF ( LDS < N-1 ) THEN | |||
| INFO = -29 | |||
| END IF | |||
| ! | |||
| IF ( WNTVEC .OR. WNTVCF ) THEN | |||
| JOBVL = 'V' | |||
| ELSE | |||
| JOBVL = 'N' | |||
| END IF | |||
| IF ( INFO == 0 ) THEN | |||
| ! Compute the minimal and the optimal workspace | |||
| ! requirements. Simulate running the code and | |||
| ! determine minimal and optimal sizes of the | |||
| ! workspace at any moment of the run. | |||
| IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
| ! All output except K is void. INFO=1 signals | |||
| ! the void input. In case of a workspace query, | |||
| ! the minimal workspace lengths are returned. | |||
| IF ( LQUERY ) THEN | |||
| IWORK(1) = 1 | |||
| WORK(1) = 2 | |||
| WORK(2) = 2 | |||
| ELSE | |||
| K = 0 | |||
| END IF | |||
| INFO = 1 | |||
| RETURN | |||
| END IF | |||
| MLWQR = MAX(1,N) ! Minimal workspace length for SGEQRF. | |||
| MLWORK = MIN(M,N) + MLWQR | |||
| IF ( LQUERY ) THEN | |||
| CALL SGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, & | |||
| INFO1 ) | |||
| OLWQR = INT(RDUMMY(1)) | |||
| OLWORK = MIN(M,N) + OLWQR | |||
| END IF | |||
| CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| REIG, IMEIG, Z, LDZ, RES, B, LDB, & | |||
| V, LDV, S, LDS, WORK, -1, IWORK, & | |||
| LIWORK, INFO1 ) | |||
| MLWDMD = INT(WORK(1)) | |||
| MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
| IMINWR = IWORK(1) | |||
| IF ( LQUERY ) THEN | |||
| OLWDMD = INT(WORK(2)) | |||
| OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
| END IF | |||
| IF ( WNTVEC .OR. WNTVCF ) THEN | |||
| MLWMQR = MAX(1,N) | |||
| MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL SORMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
| WORK, Z, LDZ, WORK, -1, INFO1 ) | |||
| OLWMQR = INT(WORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR) | |||
| END IF | |||
| END IF | |||
| IF ( WANTQ ) THEN | |||
| MLWGQR = N | |||
| MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
| WORK, -1, INFO1 ) | |||
| OLWGQR = INT(WORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR) | |||
| END IF | |||
| END IF | |||
| IMINWR = MAX( 1, IMINWR ) | |||
| MLWORK = MAX( 2, MLWORK ) | |||
| IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31 | |||
| IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33 | |||
| END IF | |||
| IF( INFO /= 0 ) THEN | |||
| CALL XERBLA( 'SGEDMDQ', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| ! Return minimal and optimal workspace sizes | |||
| IWORK(1) = IMINWR | |||
| WORK(1) = MLWORK | |||
| WORK(2) = OLWORK | |||
| RETURN | |||
| END IF | |||
| !..... | |||
| ! Initial QR factorization that is used to represent the | |||
| ! snapshots as elements of lower dimensional subspace. | |||
| ! For large scale computation with M >>N , at this place | |||
| ! one can use an out of core QRF. | |||
| ! | |||
| CALL SGEQRF( M, N, F, LDF, WORK, & | |||
| WORK(MINMN+1), LWORK-MINMN, INFO1 ) | |||
| ! | |||
| ! Define X and Y as the snapshots representations in the | |||
| ! orthogonal basis computed in the QR factorization. | |||
| ! X corresponds to the leading N-1 and Y to the trailing | |||
| ! N-1 snapshots. | |||
| CALL SLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX ) | |||
| CALL SLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
| CALL SLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
| IF ( M >= 3 ) THEN | |||
| CALL SLASET( 'L', MINMN-2, N-2, ZERO, ZERO, & | |||
| Y(3,1), LDY ) | |||
| END IF | |||
| ! | |||
| ! Compute the DMD of the projected snapshot pairs (X,Y) | |||
| CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| REIG, IMEIG, Z, LDZ, RES, B, LDB, V, & | |||
| LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, IWORK, & | |||
| LIWORK, INFO1 ) | |||
| IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
| ! Return with error code. | |||
| INFO = INFO1 | |||
| RETURN | |||
| ELSE | |||
| INFO = INFO1 | |||
| END IF | |||
| ! | |||
| ! The Ritz vectors (Koopman modes) can be explicitly | |||
| ! formed or returned in factored form. | |||
| IF ( WNTVEC ) THEN | |||
| ! Compute the eigenvectors explicitly. | |||
| IF ( M > MINMN ) CALL SLASET( 'A', M-MINMN, K, ZERO, & | |||
| ZERO, Z(MINMN+1,1), LDZ ) | |||
| CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
| LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
| ELSE IF ( WNTVCF ) THEN | |||
| ! Return the Ritz vectors (eigenvectors) in factored | |||
| ! form Z*V, where Z contains orthonormal matrix (the | |||
| ! product of Q from the initial QR factorization and | |||
| ! the SVD/POD_basis returned by SGEDMD in X) and the | |||
| ! second factor (the eigenvectors of the Rayleigh | |||
| ! quotient) is in the array V, as returned by SGEDMD. | |||
| CALL SLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
| IF ( M > N ) CALL SLASET( 'A', M-N, K, ZERO, ZERO, & | |||
| Z(N+1,1), LDZ ) | |||
| CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
| LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
| END IF | |||
| ! | |||
| ! Some optional output variables: | |||
| ! | |||
| ! The upper triangular factor in the initial QR | |||
| ! factorization is optionally returned in the array Y. | |||
| ! This is useful if this call to SGEDMDQ is to be | |||
| ! followed by a streaming DMD that is implemented in a | |||
| ! QR compressed form. | |||
| IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
| CALL SLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY ) | |||
| CALL SLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
| END IF | |||
| ! | |||
| ! The orthonormal/orthogonal factor in the initial QR | |||
| ! factorization is optionally returned in the array F. | |||
| ! Same as with the triangular factor above, this is | |||
| ! useful in a streaming DMD. | |||
| IF ( WANTQ ) THEN ! Q overwrites F | |||
| CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
| WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
| END IF | |||
| ! | |||
| RETURN | |||
| ! | |||
| END SUBROUTINE SGEDMDQ | |||
| @@ -0,0 +1,996 @@ | |||
| SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, & | |||
| M, N, X, LDX, Y, LDY, NRNK, TOL, & | |||
| K, EIGS, Z, LDZ, RES, B, LDB, & | |||
| W, LDW, S, LDS, ZWORK, LZWORK, & | |||
| RWORK, LRWORK, IWORK, LIWORK, INFO ) | |||
| ! March 2023 | |||
| !..... | |||
| USE iso_fortran_env | |||
| IMPLICIT NONE | |||
| INTEGER, PARAMETER :: WP = real64 | |||
| !..... | |||
| ! Scalar arguments | |||
| CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF | |||
| INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, & | |||
| NRNK, LDZ, LDB, LDW, LDS, & | |||
| LIWORK, LRWORK, LZWORK | |||
| INTEGER, INTENT(OUT) :: K, INFO | |||
| REAL(KIND=WP), INTENT(IN) :: TOL | |||
| ! Array arguments | |||
| COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), & | |||
| W(LDW,*), S(LDS,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: RWORK(*) | |||
| INTEGER, INTENT(OUT) :: IWORK(*) | |||
| !............................................................ | |||
| ! Purpose | |||
| ! ======= | |||
| ! ZGEDMD computes the Dynamic Mode Decomposition (DMD) for | |||
| ! a pair of data snapshot matrices. For the input matrices | |||
| ! X and Y such that Y = A*X with an unaccessible matrix | |||
| ! A, ZGEDMD computes a certain number of Ritz pairs of A using | |||
| ! the standard Rayleigh-Ritz extraction from a subspace of | |||
| ! range(X) that is determined using the leading left singular | |||
| ! vectors of X. Optionally, ZGEDMD returns the residuals | |||
| ! of the computed Ritz pairs, the information needed for | |||
| ! a refinement of the Ritz vectors, or the eigenvectors of | |||
| ! the Exact DMD. | |||
| ! For further details see the references listed | |||
| ! below. For more details of the implementation see [3]. | |||
| ! | |||
| ! References | |||
| ! ========== | |||
| ! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
| ! and experimental data, | |||
| ! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
| ! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
| ! decompositions: analysis and enhancements, | |||
| ! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
| ! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
| ! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
| ! and LAPACK Working Note 298. | |||
| ! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
| ! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
| ! Theory and Applications, Journal of Computational | |||
| ! Dynamics 1(2), 391 -421, 2014. | |||
| ! | |||
| !...................................................................... | |||
| ! Developed and supported by: | |||
| ! =========================== | |||
| ! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
| ! University of Zagreb; drmac@math.hr | |||
| ! In cooperation with | |||
| ! AIMdyn Inc., Santa Barbara, CA. | |||
| ! and supported by | |||
| ! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
| ! for Nonstationary Processes from Near-Term, Limited | |||
| ! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
| ! - DARPA PAI project "Physics-Informed Machine Learning | |||
| ! Methodologies" Contract No: HR0011-18-9-0033 | |||
| ! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
| ! Framework for Space-Time Analysis of Process Dynamics" | |||
| ! Contract No: HR0011-16-C-0116 | |||
| ! Any opinions, findings and conclusions or recommendations | |||
| ! expressed in this material are those of the author and | |||
| ! do not necessarily reflect the views of the DARPA SBIR | |||
| ! Program Office | |||
| !============================================================ | |||
| ! Distribution Statement A: | |||
| ! Approved for Public Release, Distribution Unlimited. | |||
| ! Cleared by DARPA on September 29, 2022 | |||
| !============================================================ | |||
| !............................................................ | |||
| ! Arguments | |||
| ! ========= | |||
| ! JOBS (input) CHARACTER*1 | |||
| ! Determines whether the initial data snapshots are scaled | |||
| ! by a diagonal matrix. | |||
| ! 'S' :: The data snapshots matrices X and Y are multiplied | |||
| ! with a diagonal matrix D so that X*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'C' :: The snapshots are scaled as with the 'S' option. | |||
| ! If it is found that an i-th column of X is zero | |||
| ! vector and the corresponding i-th column of Y is | |||
| ! non-zero, then the i-th column of Y is set to | |||
| ! zero and a warning flag is raised. | |||
| ! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
| ! by a diagonal matrix D so that Y*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'N' :: No data scaling. | |||
| !..... | |||
| ! JOBZ (input) CHARACTER*1 | |||
| ! Determines whether the eigenvectors (Koopman modes) will | |||
| ! be computed. | |||
| ! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
| ! and returned in the matrix Z. | |||
| ! See the description of Z. | |||
| ! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product X(:,1:K)*W, where X | |||
| ! contains a POD basis (leading left singular vectors | |||
| ! of the data matrix X) and W contains the eigenvectors | |||
| ! of the corresponding Rayleigh quotient. | |||
| ! See the descriptions of K, X, W, Z. | |||
| ! 'N' :: The eigenvectors are not computed. | |||
| !..... | |||
| ! JOBR (input) CHARACTER*1 | |||
| ! Determines whether to compute the residuals. | |||
| ! 'R' :: The residuals for the computed eigenpairs will be | |||
| ! computed and stored in the array RES. | |||
| ! See the description of RES. | |||
| ! For this option to be legal, JOBZ must be 'V'. | |||
| ! 'N' :: The residuals are not computed. | |||
| !..... | |||
| ! JOBF (input) CHARACTER*1 | |||
| ! Specifies whether to store information needed for post- | |||
| ! processing (e.g. computing refined Ritz vectors) | |||
| ! 'R' :: The matrix needed for the refinement of the Ritz | |||
| ! vectors is computed and stored in the array B. | |||
| ! See the description of B. | |||
| ! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
| ! computed and returned in the array B. See the | |||
| ! description of B. | |||
| ! 'N' :: No eigenvector refinement data is computed. | |||
| !..... | |||
| ! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
| ! Allows for a selection of the SVD algorithm from the | |||
| ! LAPACK library. | |||
| ! 1 :: ZGESVD (the QR SVD algorithm) | |||
| ! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough | |||
| ! workspace available, this is the fastest option) | |||
| ! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4 | |||
| ! are the most accurate options) | |||
| ! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
| ! are the most accurate options) | |||
| ! For the four methods above, a significant difference in | |||
| ! the accuracy of small singular values is possible if | |||
| ! the snapshots vary in norm so that X is severely | |||
| ! ill-conditioned. If small (smaller than EPS*||X||) | |||
| ! singular values are of interest and JOBS=='N', then | |||
| ! the options (3, 4) give the most accurate results, where | |||
| ! the option 4 is slightly better and with stronger | |||
| ! theoretical background. | |||
| ! If JOBS=='S', i.e. the columns of X will be normalized, | |||
| ! then all methods give nearly equally accurate results. | |||
| !..... | |||
| ! M (input) INTEGER, M>= 0 | |||
| ! The state space dimension (the row dimension of X, Y). | |||
| !..... | |||
| ! N (input) INTEGER, 0 <= N <= M | |||
| ! The number of data snapshot pairs | |||
| ! (the number of columns of X and Y). | |||
| !..... | |||
| ! X (input/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! > On entry, X contains the data snapshot matrix X. It is | |||
| ! assumed that the column norms of X are in the range of | |||
| ! the normalized floating point numbers. | |||
| ! < On exit, the leading K columns of X contain a POD basis, | |||
| ! i.e. the leading K left singular vectors of the input | |||
| ! data matrix X, U(:,1:K). All N columns of X contain all | |||
| ! left singular vectors of the input matrix X. | |||
| ! See the descriptions of K, Z and W. | |||
| !..... | |||
| ! LDX (input) INTEGER, LDX >= M | |||
| ! The leading dimension of the array X. | |||
| !..... | |||
| ! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! > On entry, Y contains the data snapshot matrix Y | |||
| ! < On exit, | |||
| ! If JOBR == 'R', the leading K columns of Y contain | |||
| ! the residual vectors for the computed Ritz pairs. | |||
| ! See the description of RES. | |||
| ! If JOBR == 'N', Y contains the original input data, | |||
| ! scaled according to the value of JOBS. | |||
| !..... | |||
| ! LDY (input) INTEGER , LDY >= M | |||
| ! The leading dimension of the array Y. | |||
| !..... | |||
| ! NRNK (input) INTEGER | |||
| ! Determines the mode how to compute the numerical rank, | |||
| ! i.e. how to truncate small singular values of the input | |||
| ! matrix X. On input, if | |||
| ! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(1) | |||
| ! This option is recommended. | |||
| ! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(i-1) | |||
| ! This option is included for R&D purposes. | |||
| ! It requires highly accurate SVD, which | |||
| ! may not be feasible. | |||
| ! The numerical rank can be enforced by using positive | |||
| ! value of NRNK as follows: | |||
| ! 0 < NRNK <= N :: at most NRNK largest singular values | |||
| ! will be used. If the number of the computed nonzero | |||
| ! singular values is less than NRNK, then only those | |||
| ! nonzero values will be used and the actually used | |||
| ! dimension is less than NRNK. The actual number of | |||
| ! the nonzero singular values is returned in the variable | |||
| ! K. See the descriptions of TOL and K. | |||
| !..... | |||
| ! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
| ! The tolerance for truncating small singular values. | |||
| ! See the description of NRNK. | |||
| !..... | |||
| ! K (output) INTEGER, 0 <= K <= N | |||
| ! The dimension of the POD basis for the data snapshot | |||
| ! matrix X and the number of the computed Ritz pairs. | |||
| ! The value of K is determined according to the rule set | |||
| ! by the parameters NRNK and TOL. | |||
| ! See the descriptions of NRNK and TOL. | |||
| !..... | |||
| ! EIGS (output) COMPLEX(KIND=WP) N-by-1 array | |||
| ! The leading K (K<=N) entries of EIGS contain | |||
| ! the computed eigenvalues (Ritz values). | |||
| ! See the descriptions of K, and Z. | |||
| !..... | |||
| ! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
| ! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
| ! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
| ! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) | |||
| ! is an eigenvector corresponding to EIGS(i). The columns | |||
| ! of W(1:k,1:K) are the computed eigenvectors of the | |||
| ! K-by-K Rayleigh quotient. | |||
| ! See the descriptions of EIGS, X and W. | |||
| !..... | |||
| ! LDZ (input) INTEGER , LDZ >= M | |||
| ! The leading dimension of the array Z. | |||
| !..... | |||
| ! RES (output) REAL(KIND=WP) N-by-1 array | |||
| ! RES(1:K) contains the residuals for the K computed | |||
| ! Ritz pairs, | |||
| ! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
| ! See the description of EIGS and Z. | |||
| !..... | |||
| ! B (output) COMPLEX(KIND=WP) M-by-N array. | |||
| ! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can | |||
| ! be used for computing the refined vectors; see further | |||
| ! details in the provided references. | |||
| ! If JOBF == 'E', B(1:M,1:K) contains | |||
| ! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
| ! Exact DMD, up to scaling by the inverse eigenvalues. | |||
| ! If JOBF =='N', then B is not referenced. | |||
| ! See the descriptions of X, W, K. | |||
| !..... | |||
| ! LDB (input) INTEGER, LDB >= M | |||
| ! The leading dimension of the array B. | |||
| !..... | |||
| ! W (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
| ! On exit, W(1:K,1:K) contains the K computed | |||
| ! eigenvectors of the matrix Rayleigh quotient. | |||
| ! The Ritz vectors (returned in Z) are the | |||
| ! product of X (containing a POD basis for the input | |||
| ! matrix X) and W. See the descriptions of K, S, X and Z. | |||
| ! W is also used as a workspace to temporarily store the | |||
| ! right singular vectors of X. | |||
| !..... | |||
| ! LDW (input) INTEGER, LDW >= N | |||
| ! The leading dimension of the array W. | |||
| !..... | |||
| ! S (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
| ! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
| ! quotient. This content is overwritten during | |||
| ! the eigenvalue decomposition by ZGEEV. | |||
| ! See the description of K. | |||
| !..... | |||
| ! LDS (input) INTEGER, LDS >= N | |||
| ! The leading dimension of the array S. | |||
| !..... | |||
| ! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array | |||
| ! ZWORK is used as complex workspace in the complex SVD, as | |||
| ! specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing | |||
| ! the eigenvalues of a Rayleigh quotient. | |||
| ! If the call to ZGEDMD is only workspace query, then | |||
| ! ZWORK(1) contains the minimal complex workspace length and | |||
| ! ZWORK(2) is the optimal complex workspace length. | |||
| ! Hence, the length of work is at least 2. | |||
| ! See the description of LZWORK. | |||
| !..... | |||
| ! LZWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector ZWORK. | |||
| ! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV), | |||
| ! where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal | |||
| ! LZWORK_SVD is calculated as follows | |||
| ! If WHTSVD == 1 :: ZGESVD :: | |||
| ! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
| ! If WHTSVD == 2 :: ZGESDD :: | |||
| ! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
| ! If WHTSVD == 3 :: ZGESVDQ :: | |||
| ! LZWORK_SVD = obtainable by a query | |||
| ! If WHTSVD == 4 :: ZGEJSV :: | |||
| ! LZWORK_SVD = obtainable by a query | |||
| ! If on entry LZWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths and returns them in | |||
| ! LZWORK(1) and LZWORK(2), respectively. | |||
| !..... | |||
| ! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array | |||
| ! On exit, RWORK(1:N) contains the singular values of | |||
| ! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). | |||
| ! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain | |||
| ! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X | |||
| ! and Y to avoid overflow in the SVD of X. | |||
| ! This may be of interest if the scaling option is off | |||
| ! and as many as possible smallest eigenvalues are | |||
| ! desired to the highest feasible accuracy. | |||
| ! If the call to ZGEDMD is only workspace query, then | |||
| ! RWORK(1) contains the minimal workspace length. | |||
| ! See the description of LRWORK. | |||
| !..... | |||
| ! LRWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector RWORK. | |||
| ! LRWORK is calculated as follows: | |||
| ! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where | |||
| ! LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace | |||
| ! for the SVD subroutine determined by the input parameter | |||
| ! WHTSVD. | |||
| ! If WHTSVD == 1 :: ZGESVD :: | |||
| ! LRWORK_SVD = 5*MIN(M,N) | |||
| ! If WHTSVD == 2 :: ZGESDD :: | |||
| ! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), | |||
| ! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
| ! If WHTSVD == 3 :: ZGESVDQ :: | |||
| ! LRWORK_SVD = obtainable by a query | |||
| ! If WHTSVD == 4 :: ZGEJSV :: | |||
| ! LRWORK_SVD = obtainable by a query | |||
| ! If on entry LRWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! real workspace length and returns it in RWORK(1). | |||
| !..... | |||
| ! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
| ! Workspace that is required only if WHTSVD equals | |||
| ! 2 , 3 or 4. (See the description of WHTSVD). | |||
| ! If on entry LWORK =-1 or LIWORK=-1, then the | |||
| ! minimal length of IWORK is computed and returned in | |||
| ! IWORK(1). See the description of LIWORK. | |||
| !..... | |||
| ! LIWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector IWORK. | |||
| ! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
| ! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) | |||
| ! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) | |||
| ! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) | |||
| ! If on entry LIWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for ZWORK, RWORK and | |||
| ! IWORK. See the descriptions of ZWORK, RWORK and IWORK. | |||
| !..... | |||
| ! INFO (output) INTEGER | |||
| ! -i < 0 :: On entry, the i-th argument had an | |||
| ! illegal value | |||
| ! = 0 :: Successful return. | |||
| ! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
| ! = 2 :: The SVD computation of X did not converge. | |||
| ! Suggestion: Check the input data and/or | |||
| ! repeat with different WHTSVD. | |||
| ! = 3 :: The computation of the eigenvalues did not | |||
| ! converge. | |||
| ! = 4 :: If data scaling was requested on input and | |||
| ! the procedure found inconsistency in the data | |||
| ! such that for some column index i, | |||
| ! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
| ! to zero if JOBS=='C'. The computation proceeds | |||
| ! with original or modified data and warning | |||
| ! flag is set with INFO=4. | |||
| !............................................................. | |||
| !............................................................. | |||
| ! Parameters | |||
| ! ~~~~~~~~~~ | |||
| REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
| REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
| COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
| COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
| ! Local scalars | |||
| ! ~~~~~~~~~~~~~ | |||
| REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, & | |||
| SSUM, XSCL1, XSCL2 | |||
| INTEGER :: i, j, IMINWR, INFO1, INFO2, & | |||
| LWRKEV, LWRSDD, LWRSVD, LWRSVJ, & | |||
| LWRSVQ, MLWORK, MWRKEV, MWRSDD, & | |||
| MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, & | |||
| OLWORK, MLRWRK | |||
| LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, & | |||
| WNTEX, WNTREF, WNTRES, WNTVEC | |||
| CHARACTER :: JOBZL, T_OR_N | |||
| CHARACTER :: JSVOPT | |||
| ! | |||
| ! Local arrays | |||
| ! ~~~~~~~~~~~~ | |||
| REAL(KIND=WP) :: RDUMMY(2) | |||
| ! External functions (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~ | |||
| REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2 | |||
| EXTERNAL ZLANGE, DLAMCH, DZNRM2, IZAMAX | |||
| INTEGER IZAMAX | |||
| LOGICAL DISNAN, LSAME | |||
| EXTERNAL DISNAN, LSAME | |||
| ! External subroutines (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL ZAXPY, ZGEMM, ZDSCAL | |||
| EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, & | |||
| ZLACPY, ZLASCL, ZLASSQ, XERBLA | |||
| ! Intrinsic functions | |||
| ! ~~~~~~~~~~~~~~~~~~~ | |||
| INTRINSIC DBLE, INT, MAX, SQRT | |||
| !............................................................ | |||
| ! | |||
| ! Test the input arguments | |||
| ! | |||
| WNTRES = LSAME(JOBR,'R') | |||
| SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C') | |||
| SCCOLY = LSAME(JOBS,'Y') | |||
| WNTVEC = LSAME(JOBZ,'V') | |||
| WNTREF = LSAME(JOBF,'R') | |||
| WNTEX = LSAME(JOBF,'E') | |||
| INFO = 0 | |||
| LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) & | |||
| .OR. ( LRWORK == -1 ) ) | |||
| ! | |||
| IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
| LSAME(JOBS,'N')) ) THEN | |||
| INFO = -1 | |||
| ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') & | |||
| .OR. LSAME(JOBZ,'F')) ) THEN | |||
| INFO = -2 | |||
| ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
| ( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN | |||
| INFO = -3 | |||
| ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
| LSAME(JOBF,'N') ) ) THEN | |||
| INFO = -4 | |||
| ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. & | |||
| (WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN | |||
| INFO = -5 | |||
| ELSE IF ( M < 0 ) THEN | |||
| INFO = -6 | |||
| ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN | |||
| INFO = -7 | |||
| ELSE IF ( LDX < M ) THEN | |||
| INFO = -9 | |||
| ELSE IF ( LDY < M ) THEN | |||
| INFO = -11 | |||
| ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
| ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
| INFO = -12 | |||
| ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
| INFO = -13 | |||
| ELSE IF ( LDZ < M ) THEN | |||
| INFO = -17 | |||
| ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN | |||
| INFO = -20 | |||
| ELSE IF ( LDW < N ) THEN | |||
| INFO = -22 | |||
| ELSE IF ( LDS < N ) THEN | |||
| INFO = -24 | |||
| END IF | |||
| ! | |||
| IF ( INFO == 0 ) THEN | |||
| ! Compute the minimal and the optimal workspace | |||
| ! requirements. Simulate running the code and | |||
| ! determine minimal and optimal sizes of the | |||
| ! workspace at any moment of the run. | |||
| IF ( N == 0 ) THEN | |||
| ! Quick return. All output except K is void. | |||
| ! INFO=1 signals the void input. | |||
| ! In case of a workspace query, the default | |||
| ! minimal workspace lengths are returned. | |||
| IF ( LQUERY ) THEN | |||
| IWORK(1) = 1 | |||
| RWORK(1) = 1 | |||
| ZWORK(1) = 2 | |||
| ZWORK(2) = 2 | |||
| ELSE | |||
| K = 0 | |||
| END IF | |||
| INFO = 1 | |||
| RETURN | |||
| END IF | |||
| IMINWR = 1 | |||
| MLRWRK = MAX(1,N) | |||
| MLWORK = 2 | |||
| OLWORK = 2 | |||
| SELECT CASE ( WHTSVD ) | |||
| CASE (1) | |||
| ! The following is specified as the minimal | |||
| ! length of WORK in the definition of ZGESVD: | |||
| ! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
| MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
| MLWORK = MAX(MLWORK,MWRSVD) | |||
| MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N)) | |||
| IF ( LQUERY ) THEN | |||
| CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, & | |||
| B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 ) | |||
| LWRSVD = INT( ZWORK(1) ) | |||
| OLWORK = MAX(OLWORK,LWRSVD) | |||
| END IF | |||
| CASE (2) | |||
| ! The following is specified as the minimal | |||
| ! length of WORK in the definition of ZGESDD: | |||
| ! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). | |||
| ! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) | |||
| ! In LAPACK 3.10.1 RWORK is defined differently. | |||
| ! Below we take max over the two versions. | |||
| ! IMINWR = 8*MIN(M,N) | |||
| MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
| MLWORK = MAX(MLWORK,MWRSDD) | |||
| IMINWR = 8*MIN(M,N) | |||
| MLRWRK = MAX( MLRWRK, N + & | |||
| MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), & | |||
| 5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), & | |||
| 2*MAX(M,N)*MIN(M,N)+ & | |||
| 2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
| IF ( LQUERY ) THEN | |||
| CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B,LDB,& | |||
| W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 ) | |||
| LWRSDD = MAX( MWRSDD,INT( ZWORK(1) )) | |||
| ! Possible bug in ZGESDD optimal workspace size. | |||
| OLWORK = MAX(OLWORK,LWRSDD) | |||
| END IF | |||
| CASE (3) | |||
| CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
| X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, & | |||
| IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 ) | |||
| IMINWR = IWORK(1) | |||
| MWRSVQ = INT(ZWORK(2)) | |||
| MLWORK = MAX(MLWORK,MWRSVQ) | |||
| MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1))) | |||
| IF ( LQUERY ) THEN | |||
| LWRSVQ = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,LWRSVQ) | |||
| END IF | |||
| CASE (4) | |||
| JSVOPT = 'J' | |||
| CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, & | |||
| N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
| ZWORK, -1, RDUMMY, -1, IWORK, INFO1 ) | |||
| IMINWR = IWORK(1) | |||
| MWRSVJ = INT(ZWORK(2)) | |||
| MLWORK = MAX(MLWORK,MWRSVJ) | |||
| MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1)))) | |||
| IF ( LQUERY ) THEN | |||
| LWRSVJ = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,LWRSVJ) | |||
| END IF | |||
| END SELECT | |||
| IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN | |||
| JOBZL = 'V' | |||
| ELSE | |||
| JOBZL = 'N' | |||
| END IF | |||
| ! Workspace calculation to the ZGEEV call | |||
| MWRKEV = MAX( 1, 2*N ) | |||
| MLWORK = MAX(MLWORK,MWRKEV) | |||
| MLRWRK = MAX(MLRWRK,N+2*N) | |||
| IF ( LQUERY ) THEN | |||
| CALL ZGEEV( 'N', JOBZL, N, S, LDS, EIGS, & | |||
| W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) | |||
| LWRKEV = INT(ZWORK(1)) | |||
| OLWORK = MAX( OLWORK, LWRKEV ) | |||
| END IF | |||
| ! | |||
| IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30 | |||
| IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28 | |||
| IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26 | |||
| END IF | |||
| ! | |||
| IF( INFO /= 0 ) THEN | |||
| CALL XERBLA( 'ZGEDMD', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| ! Return minimal and optimal workspace sizes | |||
| IWORK(1) = IMINWR | |||
| RWORK(1) = MLRWRK | |||
| ZWORK(1) = MLWORK | |||
| ZWORK(2) = OLWORK | |||
| RETURN | |||
| END IF | |||
| !............................................................ | |||
| ! | |||
| OFL = DLAMCH('O') | |||
| SMALL = DLAMCH('S') | |||
| BADXY = .FALSE. | |||
| ! | |||
| ! <1> Optional scaling of the snapshots (columns of X, Y) | |||
| ! ========================================================== | |||
| IF ( SCCOLX ) THEN | |||
| ! The columns of X will be normalized. | |||
| ! To prevent overflows, the column norms of X are | |||
| ! carefully computed using ZLASSQ. | |||
| K = 0 | |||
| DO i = 1, N | |||
| !WORK(i) = DZNRM2( M, X(1,i), 1 ) | |||
| SCALE = ZERO | |||
| CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM ) | |||
| IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN | |||
| K = 0 | |||
| INFO = -8 | |||
| CALL XERBLA('ZGEDMD',-INFO) | |||
| END IF | |||
| IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN | |||
| ROOTSC = SQRT(SSUM) | |||
| IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
| ! Norm of X(:,i) overflows. First, X(:,i) | |||
| ! is scaled by | |||
| ! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. | |||
| ! Next, the norm of X(:,i) is stored without | |||
| ! overflow as RWORK(i) = - SCALE * (ROOTSC/M), | |||
| ! the minus sign indicating the 1/M factor. | |||
| ! Scaling is performed without overflow, and | |||
| ! underflow may occur in the smallest entries | |||
| ! of X(:,i). The relative backward and forward | |||
| ! errors are small in the ell_2 norm. | |||
| CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
| M, 1, X(1,i), LDX, INFO2 ) | |||
| RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) ) | |||
| ELSE | |||
| ! X(:,i) will be scaled to unit 2-norm | |||
| RWORK(i) = SCALE * ROOTSC | |||
| CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
| X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
| ! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
| END IF | |||
| ELSE | |||
| RWORK(i) = ZERO | |||
| K = K + 1 | |||
| END IF | |||
| END DO | |||
| IF ( K == N ) THEN | |||
| ! All columns of X are zero. Return error code -8. | |||
| ! (the 8th input variable had an illegal value) | |||
| K = 0 | |||
| INFO = -8 | |||
| CALL XERBLA('ZGEDMD',-INFO) | |||
| RETURN | |||
| END IF | |||
| DO i = 1, N | |||
| ! Now, apply the same scaling to the columns of Y. | |||
| IF ( RWORK(i) > ZERO ) THEN | |||
| CALL ZDSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL | |||
| ! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
| ELSE IF ( RWORK(i) < ZERO ) THEN | |||
| CALL ZLASCL( 'G', 0, 0, -RWORK(i), & | |||
| ONE/DBLE(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
| ELSE IF ( ABS(Y(IZAMAX(M, Y(1,i),1),i )) & | |||
| /= ZERO ) THEN | |||
| ! X(:,i) is zero vector. For consistency, | |||
| ! Y(:,i) should also be zero. If Y(:,i) is not | |||
| ! zero, then the data might be inconsistent or | |||
| ! corrupted. If JOBS == 'C', Y(:,i) is set to | |||
| ! zero and a warning flag is raised. | |||
| ! The computation continues but the | |||
| ! situation will be reported in the output. | |||
| BADXY = .TRUE. | |||
| IF ( LSAME(JOBS,'C')) & | |||
| CALL ZDSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL | |||
| END IF | |||
| END DO | |||
| END IF | |||
| ! | |||
| IF ( SCCOLY ) THEN | |||
| ! The columns of Y will be normalized. | |||
| ! To prevent overflows, the column norms of Y are | |||
| ! carefully computed using ZLASSQ. | |||
| DO i = 1, N | |||
| !RWORK(i) = DZNRM2( M, Y(1,i), 1 ) | |||
| SCALE = ZERO | |||
| CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM ) | |||
| IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN | |||
| K = 0 | |||
| INFO = -10 | |||
| CALL XERBLA('ZGEDMD',-INFO) | |||
| END IF | |||
| IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN | |||
| ROOTSC = SQRT(SSUM) | |||
| IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
| ! Norm of Y(:,i) overflows. First, Y(:,i) | |||
| ! is scaled by | |||
| ! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. | |||
| ! Next, the norm of Y(:,i) is stored without | |||
| ! overflow as RWORK(i) = - SCALE * (ROOTSC/M), | |||
| ! the minus sign indicating the 1/M factor. | |||
| ! Scaling is performed without overflow, and | |||
| ! underflow may occur in the smallest entries | |||
| ! of Y(:,i). The relative backward and forward | |||
| ! errors are small in the ell_2 norm. | |||
| CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
| M, 1, Y(1,i), LDY, INFO2 ) | |||
| RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) ) | |||
| ELSE | |||
| ! Y(:,i) will be scaled to unit 2-norm | |||
| RWORK(i) = SCALE * ROOTSC | |||
| CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
| Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
| ! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
| END IF | |||
| ELSE | |||
| RWORK(i) = ZERO | |||
| END IF | |||
| END DO | |||
| DO i = 1, N | |||
| ! Now, apply the same scaling to the columns of X. | |||
| IF ( RWORK(i) > ZERO ) THEN | |||
| CALL ZDSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL | |||
| ! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
| ELSE IF ( RWORK(i) < ZERO ) THEN | |||
| CALL ZLASCL( 'G', 0, 0, -RWORK(i), & | |||
| ONE/DBLE(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
| ELSE IF ( ABS(X(IZAMAX(M, X(1,i),1),i )) & | |||
| /= ZERO ) THEN | |||
| ! Y(:,i) is zero vector. If X(:,i) is not | |||
| ! zero, then a warning flag is raised. | |||
| ! The computation continues but the | |||
| ! situation will be reported in the output. | |||
| BADXY = .TRUE. | |||
| END IF | |||
| END DO | |||
| END IF | |||
| ! | |||
| ! <2> SVD of the data snapshot matrix X. | |||
| ! ===================================== | |||
| ! The left singular vectors are stored in the array X. | |||
| ! The right singular vectors are in the array W. | |||
| ! The array W will later on contain the eigenvectors | |||
| ! of a Rayleigh quotient. | |||
| NUMRNK = N | |||
| SELECT CASE ( WHTSVD ) | |||
| CASE (1) | |||
| CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, & | |||
| LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
| T_OR_N = 'C' | |||
| CASE (2) | |||
| CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, & | |||
| LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL | |||
| T_OR_N = 'C' | |||
| CASE (3) | |||
| CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
| X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
| NUMRNK, IWORK, LIWORK, ZWORK, & | |||
| LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL | |||
| CALL ZLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
| T_OR_N = 'C' | |||
| CASE (4) | |||
| CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, & | |||
| N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
| ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL | |||
| CALL ZLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
| T_OR_N = 'N' | |||
| XSCL1 = RWORK(N+1) | |||
| XSCL2 = RWORK(N+2) | |||
| IF ( XSCL1 /= XSCL2 ) THEN | |||
| ! This is an exceptional situation. If the | |||
| ! data matrices are not scaled and the | |||
| ! largest singular value of X overflows. | |||
| ! In that case ZGEJSV can return the SVD | |||
| ! in scaled form. The scaling factor can be used | |||
| ! to rescale the data (X and Y). | |||
| CALL ZLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 ) | |||
| END IF | |||
| END SELECT | |||
| ! | |||
| IF ( INFO1 > 0 ) THEN | |||
| ! The SVD selected subroutine did not converge. | |||
| ! Return with an error code. | |||
| INFO = 2 | |||
| RETURN | |||
| END IF | |||
| ! | |||
| IF ( RWORK(1) == ZERO ) THEN | |||
| ! The largest computed singular value of (scaled) | |||
| ! X is zero. Return error code -8 | |||
| ! (the 8th input variable had an illegal value). | |||
| K = 0 | |||
| INFO = -8 | |||
| CALL XERBLA('ZGEDMD',-INFO) | |||
| RETURN | |||
| END IF | |||
| ! | |||
| !<3> Determine the numerical rank of the data | |||
| ! snapshots matrix X. This depends on the | |||
| ! parameters NRNK and TOL. | |||
| SELECT CASE ( NRNK ) | |||
| CASE ( -1 ) | |||
| K = 1 | |||
| DO i = 2, NUMRNK | |||
| IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. & | |||
| ( RWORK(i) <= SMALL ) ) EXIT | |||
| K = K + 1 | |||
| END DO | |||
| CASE ( -2 ) | |||
| K = 1 | |||
| DO i = 1, NUMRNK-1 | |||
| IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. & | |||
| ( RWORK(i) <= SMALL ) ) EXIT | |||
| K = K + 1 | |||
| END DO | |||
| CASE DEFAULT | |||
| K = 1 | |||
| DO i = 2, NRNK | |||
| IF ( RWORK(i) <= SMALL ) EXIT | |||
| K = K + 1 | |||
| END DO | |||
| END SELECT | |||
| ! Now, U = X(1:M,1:K) is the SVD/POD basis for the | |||
| ! snapshot data in the input matrix X. | |||
| !<4> Compute the Rayleigh quotient S = U^H * A * U. | |||
| ! Depending on the requested outputs, the computation | |||
| ! is organized to compute additional auxiliary | |||
| ! matrices (for the residuals and refinements). | |||
| ! | |||
| ! In all formulas below, we need V_k*Sigma_k^(-1) | |||
| ! where either V_k is in W(1:N,1:K), or V_k^H is in | |||
| ! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). | |||
| IF ( LSAME(T_OR_N, 'N') ) THEN | |||
| DO i = 1, K | |||
| CALL ZDSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL | |||
| ! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC | |||
| END DO | |||
| ELSE | |||
| ! This non-unit stride access is due to the fact | |||
| ! that ZGESVD, ZGESVDQ and ZGESDD return the | |||
| ! adjoint matrix of the right singular vectors. | |||
| !DO i = 1, K | |||
| ! CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL | |||
| ! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC | |||
| !END DO | |||
| DO i = 1, K | |||
| RWORK(N+i) = ONE/RWORK(i) | |||
| END DO | |||
| DO j = 1, N | |||
| DO i = 1, K | |||
| W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j) | |||
| END DO | |||
| END DO | |||
| END IF | |||
| ! | |||
| IF ( WNTREF ) THEN | |||
| ! | |||
| ! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) | |||
| ! for computing the refined Ritz vectors | |||
| ! (optionally, outside ZGEDMD). | |||
| CALL ZGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, & | |||
| LDW, ZZERO, Z, LDZ ) ! BLAS CALL | |||
| ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='C' | |||
| ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N' | |||
| ! | |||
| ! At this point Z contains | |||
| ! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and | |||
| ! this is needed for computing the residuals. | |||
| ! This matrix is returned in the array B and | |||
| ! it can be used to compute refined Ritz vectors. | |||
| CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL | |||
| ! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC | |||
| CALL ZGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, & | |||
| LDZ, ZZERO, S, LDS ) ! BLAS CALL | |||
| ! S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) ! INTRINSIC | |||
| ! At this point S = U^H * A * U is the Rayleigh quotient. | |||
| ELSE | |||
| ! A * U(:,1:K) is not explicitly needed and the | |||
| ! computation is organized differently. The Rayleigh | |||
| ! quotient is computed more efficiently. | |||
| CALL ZGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, & | |||
| ZZERO, Z, LDZ ) ! BLAS CALL | |||
| ! Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) ) ! INTRINSIC | |||
| ! | |||
| CALL ZGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, & | |||
| LDW, ZZERO, S, LDS ) ! BLAS CALL | |||
| ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='T' | |||
| ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N' | |||
| ! At this point S = U^H * A * U is the Rayleigh quotient. | |||
| ! If the residuals are requested, save scaled V_k into Z. | |||
| ! Recall that V_k or V_k^H is stored in W. | |||
| IF ( WNTRES .OR. WNTEX ) THEN | |||
| IF ( LSAME(T_OR_N, 'N') ) THEN | |||
| CALL ZLACPY( 'A', N, K, W, LDW, Z, LDZ ) | |||
| ELSE | |||
| CALL ZLACPY( 'A', K, N, W, LDW, Z, LDZ ) | |||
| END IF | |||
| END IF | |||
| END IF | |||
| ! | |||
| !<5> Compute the Ritz values and (if requested) the | |||
| ! right eigenvectors of the Rayleigh quotient. | |||
| ! | |||
| CALL ZGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, LDW, & | |||
| W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
| ! | |||
| ! W(1:K,1:K) contains the eigenvectors of the Rayleigh | |||
| ! quotient. See the description of Z. | |||
| ! Also, see the description of ZGEEV. | |||
| IF ( INFO1 > 0 ) THEN | |||
| ! ZGEEV failed to compute the eigenvalues and | |||
| ! eigenvectors of the Rayleigh quotient. | |||
| INFO = 3 | |||
| RETURN | |||
| END IF | |||
| ! | |||
| ! <6> Compute the eigenvectors (if requested) and, | |||
| ! the residuals (if requested). | |||
| ! | |||
| IF ( WNTVEC .OR. WNTEX ) THEN | |||
| IF ( WNTRES ) THEN | |||
| IF ( WNTREF ) THEN | |||
| ! Here, if the refinement is requested, we have | |||
| ! A*U(:,1:K) already computed and stored in Z. | |||
| ! For the residuals, need Y = A * U(:,1;K) * W. | |||
| CALL ZGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, & | |||
| LDW, ZZERO, Y, LDY ) ! BLAS CALL | |||
| ! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC | |||
| ! This frees Z; Y contains A * U(:,1:K) * W. | |||
| ELSE | |||
| ! Compute S = V_k * Sigma_k^(-1) * W, where | |||
| ! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z | |||
| CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
| W, LDW, ZZERO, S, LDS ) | |||
| ! Then, compute Z = Y * S = | |||
| ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
| ! = A * U(:,1:K) * W(1:K,1:K) | |||
| CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
| LDS, ZZERO, Z, LDZ ) | |||
| ! Save a copy of Z into Y and free Z for holding | |||
| ! the Ritz vectors. | |||
| CALL ZLACPY( 'A', M, K, Z, LDZ, Y, LDY ) | |||
| IF ( WNTEX ) CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
| END IF | |||
| ELSE IF ( WNTEX ) THEN | |||
| ! Compute S = V_k * Sigma_k^(-1) * W, where | |||
| ! V_k * Sigma_k^(-1) is stored in Z | |||
| CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
| W, LDW, ZZERO, S, LDS ) | |||
| ! Then, compute Z = Y * S = | |||
| ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
| ! = A * U(:,1:K) * W(1:K,1:K) | |||
| CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
| LDS, ZZERO, B, LDB ) | |||
| ! The above call replaces the following two calls | |||
| ! that were used in the developing-testing phase. | |||
| ! CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
| ! LDS, ZZERO, Z, LDZ) | |||
| ! Save a copy of Z into B and free Z for holding | |||
| ! the Ritz vectors. | |||
| ! CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
| END IF | |||
| ! | |||
| ! Compute the Ritz vectors | |||
| IF ( WNTVEC ) CALL ZGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, & | |||
| ZZERO, Z, LDZ ) ! BLAS CALL | |||
| ! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC | |||
| ! | |||
| IF ( WNTRES ) THEN | |||
| DO i = 1, K | |||
| CALL ZAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL | |||
| ! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC | |||
| RES(i) = DZNRM2( M, Y(1,i), 1 ) ! BLAS CALL | |||
| END DO | |||
| END IF | |||
| END IF | |||
| ! | |||
| IF ( WHTSVD == 4 ) THEN | |||
| RWORK(N+1) = XSCL1 | |||
| RWORK(N+2) = XSCL2 | |||
| END IF | |||
| ! | |||
| ! Successful exit. | |||
| IF ( .NOT. BADXY ) THEN | |||
| INFO = 0 | |||
| ELSE | |||
| ! A warning on possible data inconsistency. | |||
| ! This should be a rare event. | |||
| INFO = 4 | |||
| END IF | |||
| !............................................................ | |||
| RETURN | |||
| ! ...... | |||
| END SUBROUTINE ZGEDMD | |||
| @@ -0,0 +1,689 @@ | |||
| SUBROUTINE ZGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
| WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
| LDY, NRNK, TOL, K, EIGS, & | |||
| Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, ZWORK, LZWORK, WORK, LWORK, & | |||
| IWORK, LIWORK, INFO ) | |||
| ! March 2023 | |||
| !..... | |||
| USE iso_fortran_env | |||
| IMPLICIT NONE | |||
| INTEGER, PARAMETER :: WP = real64 | |||
| !..... | |||
| ! Scalar arguments | |||
| CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
| JOBT, JOBF | |||
| INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
| LDY, NRNK, LDZ, LDB, LDV, & | |||
| LDS, LZWORK, LWORK, LIWORK | |||
| INTEGER, INTENT(OUT) :: INFO, K | |||
| REAL(KIND=WP), INTENT(IN) :: TOL | |||
| ! Array arguments | |||
| COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
| Z(LDZ,*), B(LDB,*), & | |||
| V(LDV,*), S(LDS,*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
| COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
| REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
| INTEGER, INTENT(OUT) :: IWORK(*) | |||
| !..... | |||
| ! Purpose | |||
| ! ======= | |||
| ! ZGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
| ! a pair of data snapshot matrices, using a QR factorization | |||
| ! based compression of the data. For the input matrices | |||
| ! X and Y such that Y = A*X with an unaccessible matrix | |||
| ! A, ZGEDMDQ computes a certain number of Ritz pairs of A using | |||
| ! the standard Rayleigh-Ritz extraction from a subspace of | |||
| ! range(X) that is determined using the leading left singular | |||
| ! vectors of X. Optionally, ZGEDMDQ returns the residuals | |||
| ! of the computed Ritz pairs, the information needed for | |||
| ! a refinement of the Ritz vectors, or the eigenvectors of | |||
| ! the Exact DMD. | |||
| ! For further details see the references listed | |||
| ! below. For more details of the implementation see [3]. | |||
| ! | |||
| ! References | |||
| ! ========== | |||
| ! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
| ! and experimental data, | |||
| ! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
| ! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
| ! decompositions: analysis and enhancements, | |||
| ! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
| ! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
| ! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
| ! and LAPACK Working Note 298. | |||
| ! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
| ! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
| ! Theory and Applications, Journal of Computational | |||
| ! Dynamics 1(2), 391 -421, 2014. | |||
| ! | |||
| ! Developed and supported by: | |||
| ! =========================== | |||
| ! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
| ! University of Zagreb; drmac@math.hr | |||
| ! In cooperation with | |||
| ! AIMdyn Inc., Santa Barbara, CA. | |||
| ! and supported by | |||
| ! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
| ! for Nonstationary Processes from Near-Term, Limited | |||
| ! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
| ! - DARPA PAI project "Physics-Informed Machine Learning | |||
| ! Methodologies" Contract No: HR0011-18-9-0033 | |||
| ! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
| ! Framework for Space-Time Analysis of Process Dynamics" | |||
| ! Contract No: HR0011-16-C-0116 | |||
| ! Any opinions, findings and conclusions or recommendations | |||
| ! expressed in this material are those of the author and | |||
| ! do not necessarily reflect the views of the DARPA SBIR | |||
| ! Program Office. | |||
| !============================================================ | |||
| ! Distribution Statement A: | |||
| ! Approved for Public Release, Distribution Unlimited. | |||
| ! Cleared by DARPA on September 29, 2022 | |||
| !============================================================ | |||
| !...................................................................... | |||
| ! Arguments | |||
| ! ========= | |||
| ! JOBS (input) CHARACTER*1 | |||
| ! Determines whether the initial data snapshots are scaled | |||
| ! by a diagonal matrix. The data snapshots are the columns | |||
| ! of F. The leading N-1 columns of F are denoted X and the | |||
| ! trailing N-1 columns are denoted Y. | |||
| ! 'S' :: The data snapshots matrices X and Y are multiplied | |||
| ! with a diagonal matrix D so that X*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'C' :: The snapshots are scaled as with the 'S' option. | |||
| ! If it is found that an i-th column of X is zero | |||
| ! vector and the corresponding i-th column of Y is | |||
| ! non-zero, then the i-th column of Y is set to | |||
| ! zero and a warning flag is raised. | |||
| ! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
| ! by a diagonal matrix D so that Y*D has unit | |||
| ! nonzero columns (in the Euclidean 2-norm) | |||
| ! 'N' :: No data scaling. | |||
| !..... | |||
| ! JOBZ (input) CHARACTER*1 | |||
| ! Determines whether the eigenvectors (Koopman modes) will | |||
| ! be computed. | |||
| ! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
| ! and returned in the matrix Z. | |||
| ! See the description of Z. | |||
| ! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Z*V, where Z | |||
| ! is orthonormal and V contains the eigenvectors | |||
| ! of the corresponding Rayleigh quotient. | |||
| ! See the descriptions of F, V, Z. | |||
| ! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
| ! in factored form as the product Q*Z, where Z | |||
| ! contains the eigenvectors of the compression of the | |||
| ! underlying discretized operator onto the span of | |||
| ! the data snapshots. See the descriptions of F, V, Z. | |||
| ! Q is from the initial QR factorization. | |||
| ! 'N' :: The eigenvectors are not computed. | |||
| !..... | |||
| ! JOBR (input) CHARACTER*1 | |||
| ! Determines whether to compute the residuals. | |||
| ! 'R' :: The residuals for the computed eigenpairs will | |||
| ! be computed and stored in the array RES. | |||
| ! See the description of RES. | |||
| ! For this option to be legal, JOBZ must be 'V'. | |||
| ! 'N' :: The residuals are not computed. | |||
| !..... | |||
| ! JOBQ (input) CHARACTER*1 | |||
| ! Specifies whether to explicitly compute and return the | |||
| ! unitary matrix from the QR factorization. | |||
| ! 'Q' :: The matrix Q of the QR factorization of the data | |||
| ! snapshot matrix is computed and stored in the | |||
| ! array F. See the description of F. | |||
| ! 'N' :: The matrix Q is not explicitly computed. | |||
| !..... | |||
| ! JOBT (input) CHARACTER*1 | |||
| ! Specifies whether to return the upper triangular factor | |||
| ! from the QR factorization. | |||
| ! 'R' :: The matrix R of the QR factorization of the data | |||
| ! snapshot matrix F is returned in the array Y. | |||
| ! See the description of Y and Further details. | |||
| ! 'N' :: The matrix R is not returned. | |||
| !..... | |||
| ! JOBF (input) CHARACTER*1 | |||
| ! Specifies whether to store information needed for post- | |||
| ! processing (e.g. computing refined Ritz vectors) | |||
| ! 'R' :: The matrix needed for the refinement of the Ritz | |||
| ! vectors is computed and stored in the array B. | |||
| ! See the description of B. | |||
| ! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
| ! computed and returned in the array B. See the | |||
| ! description of B. | |||
| ! 'N' :: No eigenvector refinement data is computed. | |||
| ! To be useful on exit, this option needs JOBQ='Q'. | |||
| !..... | |||
| ! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
| ! Allows for a selection of the SVD algorithm from the | |||
| ! LAPACK library. | |||
| ! 1 :: ZGESVD (the QR SVD algorithm) | |||
| ! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough | |||
| ! workspace available, this is the fastest option) | |||
| ! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4 | |||
| ! are the most accurate options) | |||
| ! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
| ! are the most accurate options) | |||
| ! For the four methods above, a significant difference in | |||
| ! the accuracy of small singular values is possible if | |||
| ! the snapshots vary in norm so that X is severely | |||
| ! ill-conditioned. If small (smaller than EPS*||X||) | |||
| ! singular values are of interest and JOBS=='N', then | |||
| ! the options (3, 4) give the most accurate results, where | |||
| ! the option 4 is slightly better and with stronger | |||
| ! theoretical background. | |||
| ! If JOBS=='S', i.e. the columns of X will be normalized, | |||
| ! then all methods give nearly equally accurate results. | |||
| !..... | |||
| ! M (input) INTEGER, M >= 0 | |||
| ! The state space dimension (the number of rows of F). | |||
| !..... | |||
| ! N (input) INTEGER, 0 <= N <= M | |||
| ! The number of data snapshots from a single trajectory, | |||
| ! taken at equidistant discrete times. This is the | |||
| ! number of columns of F. | |||
| !..... | |||
| ! F (input/output) COMPLEX(KIND=WP) M-by-N array | |||
| ! > On entry, | |||
| ! the columns of F are the sequence of data snapshots | |||
| ! from a single trajectory, taken at equidistant discrete | |||
| ! times. It is assumed that the column norms of F are | |||
| ! in the range of the normalized floating point numbers. | |||
| ! < On exit, | |||
| ! If JOBQ == 'Q', the array F contains the orthogonal | |||
| ! matrix/factor of the QR factorization of the initial | |||
| ! data snapshots matrix F. See the description of JOBQ. | |||
| ! If JOBQ == 'N', the entries in F strictly below the main | |||
| ! diagonal contain, column-wise, the information on the | |||
| ! Householder vectors, as returned by ZGEQRF. The | |||
| ! remaining information to restore the orthogonal matrix | |||
| ! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)). | |||
| ! See the description of ZWORK. | |||
| !..... | |||
| ! LDF (input) INTEGER, LDF >= M | |||
| ! The leading dimension of the array F. | |||
| !..... | |||
| ! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array | |||
| ! X is used as workspace to hold representations of the | |||
| ! leading N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, the leading K columns of X contain the leading | |||
| ! K left singular vectors of the above described content | |||
| ! of X. To lift them to the space of the left singular | |||
| ! vectors U(:,1:K) of the input data, pre-multiply with the | |||
| ! Q factor from the initial QR factorization. | |||
| ! See the descriptions of F, K, V and Z. | |||
| !..... | |||
| ! LDX (input) INTEGER, LDX >= N | |||
| ! The leading dimension of the array X. | |||
| !..... | |||
| ! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array | |||
| ! Y is used as workspace to hold representations of the | |||
| ! trailing N-1 snapshots in the orthonormal basis computed | |||
| ! in the QR factorization of F. | |||
| ! On exit, | |||
| ! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
| ! triangular factor from the QR factorization of the data | |||
| ! snapshot matrix F. | |||
| !..... | |||
| ! LDY (input) INTEGER , LDY >= N | |||
| ! The leading dimension of the array Y. | |||
| !..... | |||
| ! NRNK (input) INTEGER | |||
| ! Determines the mode how to compute the numerical rank, | |||
| ! i.e. how to truncate small singular values of the input | |||
| ! matrix X. On input, if | |||
| ! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(1) | |||
| ! This option is recommended. | |||
| ! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
| ! if sigma(i) <= TOL*sigma(i-1) | |||
| ! This option is included for R&D purposes. | |||
| ! It requires highly accurate SVD, which | |||
| ! may not be feasible. | |||
| ! The numerical rank can be enforced by using positive | |||
| ! value of NRNK as follows: | |||
| ! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
| ! will be used. If the number of the computed nonzero | |||
| ! singular values is less than NRNK, then only those | |||
| ! nonzero values will be used and the actually used | |||
| ! dimension is less than NRNK. The actual number of | |||
| ! the nonzero singular values is returned in the variable | |||
| ! K. See the description of K. | |||
| !..... | |||
| ! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
| ! The tolerance for truncating small singular values. | |||
| ! See the description of NRNK. | |||
| !..... | |||
| ! K (output) INTEGER, 0 <= K <= N | |||
| ! The dimension of the SVD/POD basis for the leading N-1 | |||
| ! data snapshots (columns of F) and the number of the | |||
| ! computed Ritz pairs. The value of K is determined | |||
| ! according to the rule set by the parameters NRNK and | |||
| ! TOL. See the descriptions of NRNK and TOL. | |||
| !..... | |||
| ! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array | |||
| ! The leading K (K<=N-1) entries of EIGS contain | |||
| ! the computed eigenvalues (Ritz values). | |||
| ! See the descriptions of K, and Z. | |||
| !..... | |||
| ! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array | |||
| ! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
| ! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
| ! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
| ! Z*V, where Z contains orthonormal matrix (the product of | |||
| ! Q from the initial QR factorization and the SVD/POD_basis | |||
| ! returned by ZGEDMD in X) and the second factor (the | |||
| ! eigenvectors of the Rayleigh quotient) is in the array V, | |||
| ! as returned by ZGEDMD. That is, X(:,1:K)*V(:,i) | |||
| ! is an eigenvector corresponding to EIGS(i). The columns | |||
| ! of V(1:K,1:K) are the computed eigenvectors of the | |||
| ! K-by-K Rayleigh quotient. | |||
| ! See the descriptions of EIGS, X and V. | |||
| !..... | |||
| ! LDZ (input) INTEGER , LDZ >= M | |||
| ! The leading dimension of the array Z. | |||
| !..... | |||
| ! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
| ! RES(1:K) contains the residuals for the K computed | |||
| ! Ritz pairs, | |||
| ! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
| ! See the description of EIGS and Z. | |||
| !..... | |||
| ! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
| ! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
| ! be used for computing the refined vectors; see further | |||
| ! details in the provided references. | |||
| ! If JOBF == 'E', B(1:N,1;K) contains | |||
| ! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
| ! Exact DMD, up to scaling by the inverse eigenvalues. | |||
| ! In both cases, the content of B can be lifted to the | |||
| ! original dimension of the input data by pre-multiplying | |||
| ! with the Q factor from the initial QR factorization. | |||
| ! Here A denotes a compression of the underlying operator. | |||
| ! See the descriptions of F and X. | |||
| ! If JOBF =='N', then B is not referenced. | |||
| !..... | |||
| ! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
| ! The leading dimension of the array B. | |||
| !..... | |||
| ! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
| ! On exit, V(1:K,1:K) V contains the K eigenvectors of | |||
| ! the Rayleigh quotient. The Ritz vectors | |||
| ! (returned in Z) are the product of Q from the initial QR | |||
| ! factorization (see the description of F) X (see the | |||
| ! description of X) and V. | |||
| !..... | |||
| ! LDV (input) INTEGER, LDV >= N-1 | |||
| ! The leading dimension of the array V. | |||
| !..... | |||
| ! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
| ! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
| ! quotient. This content is overwritten during | |||
| ! the eigenvalue decomposition by ZGEEV. | |||
| ! See the description of K. | |||
| !..... | |||
| ! LDS (input) INTEGER, LDS >= N-1 | |||
| ! The leading dimension of the array S. | |||
| !..... | |||
| ! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array | |||
| ! On exit, | |||
| ! ZWORK(1:MIN(M,N)) contains the scalar factors of the | |||
| ! elementary reflectors as returned by ZGEQRF of the | |||
| ! M-by-N input matrix F. | |||
| ! If the call to ZGEDMDQ is only workspace query, then | |||
| ! ZWORK(1) contains the minimal complex workspace length and | |||
| ! ZWORK(2) is the optimal complex workspace length. | |||
| ! Hence, the length of work is at least 2. | |||
| ! See the description of LZWORK. | |||
| !..... | |||
| ! LZWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector ZWORK. | |||
| ! LZWORK is calculated as follows: | |||
| ! Let MLWQR = N (minimal workspace for ZGEQRF[M,N]) | |||
| ! MLWDMD = minimal workspace for ZGEDMD (see the | |||
| ! description of LWORK in ZGEDMD) | |||
| ! MLWMQR = N (minimal workspace for | |||
| ! ZUNMQR['L','N',M,N,N]) | |||
| ! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N]) | |||
| ! MINMN = MIN(M,N) | |||
| ! Then | |||
| ! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD) | |||
| ! is further updated as follows: | |||
| ! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
| ! LZWORK = MAX(LZWORK, MINMN+MLWMQR) | |||
| ! if JOBQ == 'Q' THEN | |||
| ! LZWORK = MAX(ZLWORK, MINMN+MLWGQR) | |||
| ! | |||
| !..... | |||
| ! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
| ! On exit, | |||
| ! WORK(1:N-1) contains the singular values of | |||
| ! the input submatrix F(1:M,1:N-1). | |||
| ! If the call to ZGEDMDQ is only workspace query, then | |||
| ! WORK(1) contains the minimal workspace length and | |||
| ! WORK(2) is the optimal workspace length. hence, the | |||
| ! length of work is at least 2. | |||
| ! See the description of LWORK. | |||
| !..... | |||
| ! LWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector WORK. | |||
| ! LWORK is the same as in ZGEDMD, because in ZGEDMDQ | |||
| ! only ZGEDMD requires real workspace for snapshots | |||
| ! of dimensions MIN(M,N)-by-(N-1). | |||
| ! If on entry LWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace length for WORK. | |||
| !..... | |||
| ! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
| ! Workspace that is required only if WHTSVD equals | |||
| ! 2 , 3 or 4. (See the description of WHTSVD). | |||
| ! If on entry LWORK =-1 or LIWORK=-1, then the | |||
| ! minimal length of IWORK is computed and returned in | |||
| ! IWORK(1). See the description of LIWORK. | |||
| !..... | |||
| ! LIWORK (input) INTEGER | |||
| ! The minimal length of the workspace vector IWORK. | |||
| ! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
| ! Let M1=MIN(M,N), N1=N-1. Then | |||
| ! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) | |||
| ! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) | |||
| ! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) | |||
| ! If on entry LIWORK = -1, then a workspace query is | |||
| ! assumed and the procedure only computes the minimal | |||
| ! and the optimal workspace lengths for both WORK and | |||
| ! IWORK. See the descriptions of WORK and IWORK. | |||
| !..... | |||
| ! INFO (output) INTEGER | |||
| ! -i < 0 :: On entry, the i-th argument had an | |||
| ! illegal value | |||
| ! = 0 :: Successful return. | |||
| ! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
| ! = 2 :: The SVD computation of X did not converge. | |||
| ! Suggestion: Check the input data and/or | |||
| ! repeat with different WHTSVD. | |||
| ! = 3 :: The computation of the eigenvalues did not | |||
| ! converge. | |||
| ! = 4 :: If data scaling was requested on input and | |||
| ! the procedure found inconsistency in the data | |||
| ! such that for some column index i, | |||
| ! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
| ! to zero if JOBS=='C'. The computation proceeds | |||
| ! with original or modified data and warning | |||
| ! flag is set with INFO=4. | |||
| !............................................................. | |||
| !............................................................. | |||
| ! Parameters | |||
| ! ~~~~~~~~~~ | |||
| REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
| REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
| ! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
| COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
| ! | |||
| ! Local scalars | |||
| ! ~~~~~~~~~~~~~ | |||
| INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, & | |||
| MLWDMD, MLWGQR, MLWMQR, MLWORK, & | |||
| MLWQR, OLWDMD, OLWGQR, OLWMQR, & | |||
| OLWORK, OLWQR | |||
| LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
| WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
| WNTVCQ, WNTREF, WNTEX | |||
| CHARACTER(LEN=1) :: JOBVL | |||
| ! | |||
| ! External functions (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~ | |||
| LOGICAL LSAME | |||
| EXTERNAL LSAME | |||
| ! | |||
| ! External subroutines (BLAS and LAPACK) | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL ZGEQRF, ZLACPY, ZLASET, ZUNGQR, & | |||
| ZUNMQR, XERBLA | |||
| ! External subroutines | |||
| ! ~~~~~~~~~~~~~~~~~~~~ | |||
| EXTERNAL ZGEDMD | |||
| ! Intrinsic functions | |||
| ! ~~~~~~~~~~~~~~~~~~~ | |||
| INTRINSIC MAX, MIN, INT | |||
| !.......................................................... | |||
| ! | |||
| ! Test the input arguments | |||
| WNTRES = LSAME(JOBR,'R') | |||
| SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
| SCCOLY = LSAME(JOBS,'Y') | |||
| WNTVEC = LSAME(JOBZ,'V') | |||
| WNTVCF = LSAME(JOBZ,'F') | |||
| WNTVCQ = LSAME(JOBZ,'Q') | |||
| WNTREF = LSAME(JOBF,'R') | |||
| WNTEX = LSAME(JOBF,'E') | |||
| WANTQ = LSAME(JOBQ,'Q') | |||
| WNTTRF = LSAME(JOBT,'R') | |||
| MINMN = MIN(M,N) | |||
| INFO = 0 | |||
| LQUERY = ( (LZWORK == -1) .OR. (LWORK == -1) .OR. (LIWORK == -1) ) | |||
| ! | |||
| IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
| LSAME(JOBS,'N')) ) THEN | |||
| INFO = -1 | |||
| ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
| .OR. LSAME(JOBZ,'N')) ) THEN | |||
| INFO = -2 | |||
| ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
| ( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
| INFO = -3 | |||
| ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
| INFO = -4 | |||
| ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
| INFO = -5 | |||
| ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
| LSAME(JOBF,'N') ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
| (WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
| INFO = -7 | |||
| ELSE IF ( M < 0 ) THEN | |||
| INFO = -8 | |||
| ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
| INFO = -9 | |||
| ELSE IF ( LDF < M ) THEN | |||
| INFO = -11 | |||
| ELSE IF ( LDX < MINMN ) THEN | |||
| INFO = -13 | |||
| ELSE IF ( LDY < MINMN ) THEN | |||
| INFO = -15 | |||
| ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
| ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
| INFO = -16 | |||
| ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
| INFO = -17 | |||
| ELSE IF ( LDZ < M ) THEN | |||
| INFO = -21 | |||
| ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
| INFO = -24 | |||
| ELSE IF ( LDV < N-1 ) THEN | |||
| INFO = -26 | |||
| ELSE IF ( LDS < N-1 ) THEN | |||
| INFO = -28 | |||
| END IF | |||
| ! | |||
| IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN | |||
| JOBVL = 'V' | |||
| ELSE | |||
| JOBVL = 'N' | |||
| END IF | |||
| IF ( INFO == 0 ) THEN | |||
| ! Compute the minimal and the optimal workspace | |||
| ! requirements. Simulate running the code and | |||
| ! determine minimal and optimal sizes of the | |||
| ! workspace at any moment of the run. | |||
| IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
| ! All output except K is void. INFO=1 signals | |||
| ! the void input. In case of a workspace query, | |||
| ! the minimal workspace lengths are returned. | |||
| IF ( LQUERY ) THEN | |||
| IWORK(1) = 1 | |||
| ZWORK(1) = 2 | |||
| ZWORK(2) = 2 | |||
| WORK(1) = 2 | |||
| WORK(2) = 2 | |||
| ELSE | |||
| K = 0 | |||
| END IF | |||
| INFO = 1 | |||
| RETURN | |||
| END IF | |||
| MLRWRK = 2 | |||
| MLWORK = 2 | |||
| OLWORK = 2 | |||
| IMINWR = 1 | |||
| MLWQR = MAX(1,N) ! Minimal workspace length for ZGEQRF. | |||
| MLWORK = MAX(MLWORK,MINMN + MLWQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL ZGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, & | |||
| INFO1 ) | |||
| OLWQR = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN + OLWQR) | |||
| END IF | |||
| CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, ZWORK, -1, WORK, -1, IWORK,& | |||
| -1, INFO1 ) | |||
| MLWDMD = INT(ZWORK(1)) | |||
| MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
| MLRWRK = MAX(MLRWRK, INT(WORK(1))) | |||
| IMINWR = MAX(IMINWR, IWORK(1)) | |||
| IF ( LQUERY ) THEN | |||
| OLWDMD = INT(ZWORK(2)) | |||
| OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
| END IF | |||
| IF ( WNTVEC .OR. WNTVCF ) THEN | |||
| MLWMQR = MAX(1,N) | |||
| MLWORK = MAX(MLWORK,MINMN+MLWMQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL ZUNMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
| ZWORK, Z, LDZ, ZWORK, -1, INFO1 ) | |||
| OLWMQR = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN+OLWMQR) | |||
| END IF | |||
| END IF | |||
| IF ( WANTQ ) THEN | |||
| MLWGQR = MAX(1,N) | |||
| MLWORK = MAX(MLWORK,MINMN+MLWGQR) | |||
| IF ( LQUERY ) THEN | |||
| CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
| ZWORK, -1, INFO1 ) | |||
| OLWGQR = INT(ZWORK(1)) | |||
| OLWORK = MAX(OLWORK,MINMN+OLWGQR) | |||
| END IF | |||
| END IF | |||
| IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34 | |||
| IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32 | |||
| IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30 | |||
| END IF | |||
| IF( INFO /= 0 ) THEN | |||
| CALL XERBLA( 'ZGEDMDQ', -INFO ) | |||
| RETURN | |||
| ELSE IF ( LQUERY ) THEN | |||
| ! Return minimal and optimal workspace sizes | |||
| IWORK(1) = IMINWR | |||
| ZWORK(1) = MLWORK | |||
| ZWORK(2) = OLWORK | |||
| WORK(1) = MLRWRK | |||
| WORK(2) = MLRWRK | |||
| RETURN | |||
| END IF | |||
| !..... | |||
| ! Initial QR factorization that is used to represent the | |||
| ! snapshots as elements of lower dimensional subspace. | |||
| ! For large scale computation with M >> N, at this place | |||
| ! one can use an out of core QRF. | |||
| ! | |||
| CALL ZGEQRF( M, N, F, LDF, ZWORK, & | |||
| ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| ! | |||
| ! Define X and Y as the snapshots representations in the | |||
| ! orthogonal basis computed in the QR factorization. | |||
| ! X corresponds to the leading N-1 and Y to the trailing | |||
| ! N-1 snapshots. | |||
| CALL ZLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX ) | |||
| CALL ZLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
| CALL ZLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
| IF ( M >= 3 ) THEN | |||
| CALL ZLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, & | |||
| Y(3,1), LDY ) | |||
| END IF | |||
| ! | |||
| ! Compute the DMD of the projected snapshot pairs (X,Y) | |||
| CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
| N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
| EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
| S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, & | |||
| WORK, LWORK, IWORK, LIWORK, INFO1 ) | |||
| IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
| ! Return with error code. See ZGEDMD for details. | |||
| INFO = INFO1 | |||
| RETURN | |||
| ELSE | |||
| INFO = INFO1 | |||
| END IF | |||
| ! | |||
| ! The Ritz vectors (Koopman modes) can be explicitly | |||
| ! formed or returned in factored form. | |||
| IF ( WNTVEC ) THEN | |||
| ! Compute the eigenvectors explicitly. | |||
| IF ( M > MINMN ) CALL ZLASET( 'A', M-MINMN, K, ZZERO, & | |||
| ZZERO, Z(MINMN+1,1), LDZ ) | |||
| CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
| LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| ELSE IF ( WNTVCF ) THEN | |||
| ! Return the Ritz vectors (eigenvectors) in factored | |||
| ! form Z*V, where Z contains orthonormal matrix (the | |||
| ! product of Q from the initial QR factorization and | |||
| ! the SVD/POD_basis returned by ZGEDMD in X) and the | |||
| ! second factor (the eigenvectors of the Rayleigh | |||
| ! quotient) is in the array V, as returned by ZGEDMD. | |||
| CALL ZLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
| IF ( M > N ) CALL ZLASET( 'A', M-N, K, ZZERO, ZZERO, & | |||
| Z(N+1,1), LDZ ) | |||
| CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
| LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| END IF | |||
| ! | |||
| ! Some optional output variables: | |||
| ! | |||
| ! The upper triangular factor R in the initial QR | |||
| ! factorization is optionally returned in the array Y. | |||
| ! This is useful if this call to ZGEDMDQ is to be | |||
| ! followed by a streaming DMD that is implemented in a | |||
| ! QR compressed form. | |||
| IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
| CALL ZLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY ) | |||
| CALL ZLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
| END IF | |||
| ! | |||
| ! The orthonormal/unitary factor Q in the initial QR | |||
| ! factorization is optionally returned in the array F. | |||
| ! Same as with the triangular factor above, this is | |||
| ! useful in a streaming DMD. | |||
| IF ( WANTQ ) THEN ! Q overwrites F | |||
| CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
| ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
| END IF | |||
| ! | |||
| RETURN | |||
| ! | |||
| END SUBROUTINE ZGEDMDQ | |||