| @@ -1,667 +0,0 @@ | |||
| /*********************************************************************/ | |||
| /* Copyright 2009, 2010 The University of Texas at Austin. */ | |||
| /* All rights reserved. */ | |||
| /* */ | |||
| /* Redistribution and use in source and binary forms, with or */ | |||
| /* without modification, are permitted provided that the following */ | |||
| /* conditions are met: */ | |||
| /* */ | |||
| /* 1. Redistributions of source code must retain the above */ | |||
| /* copyright notice, this list of conditions and the following */ | |||
| /* disclaimer. */ | |||
| /* */ | |||
| /* 2. Redistributions in binary form must reproduce the above */ | |||
| /* copyright notice, this list of conditions and the following */ | |||
| /* disclaimer in the documentation and/or other materials */ | |||
| /* provided with the distribution. */ | |||
| /* */ | |||
| /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ | |||
| /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ | |||
| /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ | |||
| /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ | |||
| /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ | |||
| /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ | |||
| /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ | |||
| /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ | |||
| /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ | |||
| /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ | |||
| /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ | |||
| /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ | |||
| /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ | |||
| /* POSSIBILITY OF SUCH DAMAGE. */ | |||
| /* */ | |||
| /* The views and conclusions contained in the software and */ | |||
| /* documentation are those of the authors and should not be */ | |||
| /* interpreted as representing official policies, either expressed */ | |||
| /* or implied, of The University of Texas at Austin. */ | |||
| /*********************************************************************/ | |||
| #include <stdio.h> | |||
| #include "common.h" | |||
| #ifndef USE_SIMPLE_THREADED_LEVEL3 | |||
| //The array of job_t may overflow the stack. | |||
| //Instead, use malloc to alloc job_t. | |||
| #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD | |||
| #define USE_ALLOC_HEAP | |||
| #endif | |||
| static FLOAT dm1 = -1.; | |||
| #ifndef KERNEL_FUNC | |||
| #ifndef LOWER | |||
| #define KERNEL_FUNC SYRK_KERNEL_U | |||
| #else | |||
| #define KERNEL_FUNC SYRK_KERNEL_L | |||
| #endif | |||
| #endif | |||
| #ifndef LOWER | |||
| #ifndef COMPLEX | |||
| #define TRSM_KERNEL TRSM_KERNEL_LT | |||
| #else | |||
| #define TRSM_KERNEL TRSM_KERNEL_LC | |||
| #endif | |||
| #else | |||
| #ifndef COMPLEX | |||
| #define TRSM_KERNEL TRSM_KERNEL_RN | |||
| #else | |||
| #define TRSM_KERNEL TRSM_KERNEL_RR | |||
| #endif | |||
| #endif | |||
| #ifndef CACHE_LINE_SIZE | |||
| #define CACHE_LINE_SIZE 8 | |||
| #endif | |||
| #ifndef DIVIDE_RATE | |||
| #define DIVIDE_RATE 2 | |||
| #endif | |||
| #ifndef SWITCH_RATIO | |||
| #define SWITCH_RATIO 2 | |||
| #endif | |||
| #ifndef LOWER | |||
| #define TRANS | |||
| #endif | |||
| #ifndef SYRK_LOCAL | |||
| #if !defined(LOWER) && !defined(TRANS) | |||
| #define SYRK_LOCAL SYRK_UN | |||
| #elif !defined(LOWER) && defined(TRANS) | |||
| #define SYRK_LOCAL SYRK_UT | |||
| #elif defined(LOWER) && !defined(TRANS) | |||
| #define SYRK_LOCAL SYRK_LN | |||
| #else | |||
| #define SYRK_LOCAL SYRK_LT | |||
| #endif | |||
| #endif | |||
| typedef struct { | |||
| #ifdef HAVE_C11 | |||
| _Atomic | |||
| #else | |||
| volatile | |||
| #endif | |||
| BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE]; | |||
| } job_t; | |||
| #ifndef KERNEL_OPERATION | |||
| #ifndef COMPLEX | |||
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ | |||
| KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) | |||
| #else | |||
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ | |||
| KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) | |||
| #endif | |||
| #endif | |||
| #ifndef ICOPY_OPERATION | |||
| #ifndef TRANS | |||
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| #else | |||
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| #endif | |||
| #endif | |||
| #ifndef OCOPY_OPERATION | |||
| #ifdef TRANS | |||
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| #else | |||
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| #endif | |||
| #endif | |||
| #ifndef S | |||
| #define S args -> a | |||
| #endif | |||
| #ifndef A | |||
| #define A args -> b | |||
| #endif | |||
| #ifndef C | |||
| #define C args -> c | |||
| #endif | |||
| #ifndef LDA | |||
| #define LDA args -> lda | |||
| #endif | |||
| #ifndef N | |||
| #define N args -> m | |||
| #endif | |||
| #ifndef K | |||
| #define K args -> k | |||
| #endif | |||
| static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ | |||
| FLOAT *buffer[DIVIDE_RATE]; | |||
| BLASLONG k, lda; | |||
| BLASLONG m_from, m_to; | |||
| FLOAT *alpha; | |||
| FLOAT *a, *c; | |||
| job_t *job = (job_t *)args -> common; | |||
| BLASLONG xxx, bufferside; | |||
| BLASLONG jjs, min_jj; | |||
| BLASLONG is, min_i, div_n; | |||
| BLASLONG i, current; | |||
| k = K; | |||
| a = (FLOAT *)A; | |||
| c = (FLOAT *)C; | |||
| lda = LDA; | |||
| alpha = (FLOAT *)args -> alpha; | |||
| m_from = range_n[mypos + 0]; | |||
| m_to = range_n[mypos + 1]; | |||
| #if 0 | |||
| fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld\n", mypos, m_from, m_to); | |||
| #endif | |||
| div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; | |||
| buffer[0] = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); | |||
| for (i = 1; i < DIVIDE_RATE; i++) { | |||
| buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE; | |||
| } | |||
| #ifndef LOWER | |||
| TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb); | |||
| #else | |||
| TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb); | |||
| #endif | |||
| for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) { | |||
| for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ | |||
| min_jj = MIN(m_to, xxx + div_n) - jjs; | |||
| #ifndef LOWER | |||
| if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; | |||
| #else | |||
| if (min_jj > GEMM_P) min_jj = GEMM_P; | |||
| #endif | |||
| #ifndef LOWER | |||
| OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE); | |||
| TRSM_KERNEL (k, min_jj, k, dm1, | |||
| #ifdef COMPLEX | |||
| ZERO, | |||
| #endif | |||
| sb, | |||
| buffer[bufferside] + k * (jjs - xxx) * COMPSIZE, | |||
| a + jjs * lda * COMPSIZE, lda, 0); | |||
| #else | |||
| ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE); | |||
| TRSM_KERNEL (min_jj, k, k, dm1, | |||
| #ifdef COMPLEX | |||
| ZERO, | |||
| #endif | |||
| buffer[bufferside] + k * (jjs - xxx) * COMPSIZE, | |||
| sb, | |||
| a + jjs * COMPSIZE, lda, 0); | |||
| #endif | |||
| } | |||
| #ifndef LOWER | |||
| for (i = 0; i <= mypos; i++) | |||
| job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; | |||
| #else | |||
| for (i = mypos; i < args -> nthreads; i++) | |||
| job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; | |||
| #endif | |||
| WMB; | |||
| } | |||
| min_i = m_to - m_from; | |||
| if (min_i >= GEMM_P * 2) { | |||
| min_i = GEMM_P; | |||
| } else | |||
| if (min_i > GEMM_P) { | |||
| min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; | |||
| } | |||
| #ifndef LOWER | |||
| ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa); | |||
| #else | |||
| OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa); | |||
| #endif | |||
| current = mypos; | |||
| #ifndef LOWER | |||
| while (current < args -> nthreads) | |||
| #else | |||
| while (current >= 0) | |||
| #endif | |||
| { | |||
| div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; | |||
| for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { | |||
| /* thread has to wait */ | |||
| if (current != mypos) while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; | |||
| KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha, | |||
| sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], | |||
| c, lda, m_from, xxx); | |||
| if (m_from + min_i >= m_to) { | |||
| job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; | |||
| WMB; | |||
| } | |||
| } | |||
| #ifndef LOWER | |||
| current ++; | |||
| #else | |||
| current --; | |||
| #endif | |||
| } | |||
| for(is = m_from + min_i; is < m_to; is += min_i){ | |||
| min_i = m_to - is; | |||
| if (min_i >= GEMM_P * 2) { | |||
| min_i = GEMM_P; | |||
| } else | |||
| if (min_i > GEMM_P) { | |||
| min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; | |||
| } | |||
| #ifndef LOWER | |||
| ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa); | |||
| #else | |||
| OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa); | |||
| #endif | |||
| current = mypos; | |||
| #ifndef LOWER | |||
| while (current < args -> nthreads) | |||
| #else | |||
| while (current >= 0) | |||
| #endif | |||
| { | |||
| div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; | |||
| for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { | |||
| KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha, | |||
| sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], | |||
| c, lda, is, xxx); | |||
| if (is + min_i >= m_to) { | |||
| job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; | |||
| WMB; | |||
| } | |||
| } | |||
| #ifndef LOWER | |||
| current ++; | |||
| #else | |||
| current --; | |||
| #endif | |||
| } | |||
| } | |||
| for (i = 0; i < args -> nthreads; i++) { | |||
| if (i != mypos) { | |||
| for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { | |||
| while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; | |||
| } | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||
| static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){ | |||
| blas_arg_t newarg; | |||
| #ifndef USE_ALLOC_HEAP | |||
| job_t job[MAX_CPU_NUMBER]; | |||
| #else | |||
| job_t * job = NULL; | |||
| #endif | |||
| blas_queue_t queue[MAX_CPU_NUMBER]; | |||
| BLASLONG range[MAX_CPU_NUMBER + 100]; | |||
| BLASLONG num_cpu; | |||
| BLASLONG nthreads = args -> nthreads; | |||
| BLASLONG width, i, j, k; | |||
| BLASLONG n, n_from, n_to; | |||
| int mode, mask; | |||
| double dnum; | |||
| #ifndef COMPLEX | |||
| #ifdef XDOUBLE | |||
| mode = BLAS_XDOUBLE | BLAS_REAL; | |||
| mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1; | |||
| #elif defined(DOUBLE) | |||
| mode = BLAS_DOUBLE | BLAS_REAL; | |||
| mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1; | |||
| #elif defined(HALF) | |||
| mode = BLAS_HALF | BLAS_REAL; | |||
| mask = MAX(SHGEMM_UNROLL_M, SHGEMM_UNROLL_N) - 1; | |||
| #else | |||
| mode = BLAS_SINGLE | BLAS_REAL; | |||
| mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1; | |||
| #endif | |||
| #else | |||
| #ifdef XDOUBLE | |||
| mode = BLAS_XDOUBLE | BLAS_COMPLEX; | |||
| mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1; | |||
| #elif defined(DOUBLE) | |||
| mode = BLAS_DOUBLE | BLAS_COMPLEX; | |||
| mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1; | |||
| #else | |||
| mode = BLAS_SINGLE | BLAS_COMPLEX; | |||
| mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1; | |||
| #endif | |||
| #endif | |||
| newarg.m = args -> m; | |||
| newarg.k = args -> k; | |||
| newarg.a = args -> a; | |||
| newarg.b = args -> b; | |||
| newarg.c = args -> c; | |||
| newarg.lda = args -> lda; | |||
| newarg.alpha = args -> alpha; | |||
| #ifdef USE_ALLOC_HEAP | |||
| job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); | |||
| if(job==NULL){ | |||
| fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); | |||
| exit(1); | |||
| } | |||
| #endif | |||
| newarg.common = (void *)job; | |||
| n_from = 0; | |||
| n_to = args -> m; | |||
| #ifndef LOWER | |||
| range[MAX_CPU_NUMBER] = n_to - n_from; | |||
| range[0] = 0; | |||
| num_cpu = 0; | |||
| i = 0; | |||
| n = n_to - n_from; | |||
| dnum = (double)n * (double)n /(double)nthreads; | |||
| while (i < n){ | |||
| if (nthreads - num_cpu > 1) { | |||
| double di = (double)i; | |||
| width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1)); | |||
| if (num_cpu == 0) width = n - (((n - width)/(mask+1)) * (mask+1)); | |||
| if ((width > n - i) || (width < mask)) width = n - i; | |||
| } else { | |||
| width = n - i; | |||
| } | |||
| range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width; | |||
| queue[num_cpu].mode = mode; | |||
| queue[num_cpu].routine = inner_thread; | |||
| queue[num_cpu].args = &newarg; | |||
| queue[num_cpu].range_m = NULL; | |||
| queue[num_cpu].sa = NULL; | |||
| queue[num_cpu].sb = NULL; | |||
| queue[num_cpu].next = &queue[num_cpu + 1]; | |||
| num_cpu ++; | |||
| i += width; | |||
| } | |||
| for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu]; | |||
| #else | |||
| range[0] = 0; | |||
| num_cpu = 0; | |||
| i = 0; | |||
| n = n_to - n_from; | |||
| dnum = (double)n * (double)n /(double)nthreads; | |||
| while (i < n){ | |||
| if (nthreads - num_cpu > 1) { | |||
| double di = (double)i; | |||
| width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1)); | |||
| if ((width > n - i) || (width < mask)) width = n - i; | |||
| } else { | |||
| width = n - i; | |||
| } | |||
| range[num_cpu + 1] = range[num_cpu] + width; | |||
| queue[num_cpu].mode = mode; | |||
| queue[num_cpu].routine = inner_thread; | |||
| queue[num_cpu].args = &newarg; | |||
| queue[num_cpu].range_m = NULL; | |||
| queue[num_cpu].range_n = range; | |||
| queue[num_cpu].sa = NULL; | |||
| queue[num_cpu].sb = NULL; | |||
| queue[num_cpu].next = &queue[num_cpu + 1]; | |||
| num_cpu ++; | |||
| i += width; | |||
| } | |||
| #endif | |||
| newarg.nthreads = num_cpu; | |||
| if (num_cpu) { | |||
| for (j = 0; j < num_cpu; j++) { | |||
| for (i = 0; i < num_cpu; i++) { | |||
| for (k = 0; k < DIVIDE_RATE; k++) { | |||
| job[j].working[i][CACHE_LINE_SIZE * k] = 0; | |||
| } | |||
| } | |||
| } | |||
| queue[0].sa = sa; | |||
| queue[0].sb = sb; | |||
| queue[num_cpu - 1].next = NULL; | |||
| exec_blas(num_cpu, queue); | |||
| } | |||
| #ifdef USE_ALLOC_HEAP | |||
| free(job); | |||
| #endif | |||
| return 0; | |||
| } | |||
| #endif | |||
| blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) { | |||
| BLASLONG n, bk, i, blocking, lda; | |||
| BLASLONG info; | |||
| int mode; | |||
| blas_arg_t newarg; | |||
| FLOAT *a; | |||
| FLOAT alpha[2] = { -ONE, ZERO}; | |||
| #ifndef COMPLEX | |||
| #ifdef XDOUBLE | |||
| mode = BLAS_XDOUBLE | BLAS_REAL; | |||
| #elif defined(DOUBLE) | |||
| mode = BLAS_DOUBLE | BLAS_REAL; | |||
| #else | |||
| mode = BLAS_SINGLE | BLAS_REAL; | |||
| #endif | |||
| #else | |||
| #ifdef XDOUBLE | |||
| mode = BLAS_XDOUBLE | BLAS_COMPLEX; | |||
| #elif defined(DOUBLE) | |||
| mode = BLAS_DOUBLE | BLAS_COMPLEX; | |||
| #else | |||
| mode = BLAS_SINGLE | BLAS_COMPLEX; | |||
| #endif | |||
| #endif | |||
| if (args -> nthreads == 1) { | |||
| #ifndef LOWER | |||
| info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0); | |||
| #else | |||
| info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0); | |||
| #endif | |||
| return info; | |||
| } | |||
| n = args -> n; | |||
| a = (FLOAT *)args -> a; | |||
| lda = args -> lda; | |||
| if (range_n) n = range_n[1] - range_n[0]; | |||
| if (n <= GEMM_UNROLL_N * 2) { | |||
| #ifndef LOWER | |||
| info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0); | |||
| #else | |||
| info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0); | |||
| #endif | |||
| return info; | |||
| } | |||
| newarg.lda = lda; | |||
| newarg.ldb = lda; | |||
| newarg.ldc = lda; | |||
| newarg.alpha = alpha; | |||
| newarg.beta = NULL; | |||
| newarg.nthreads = args -> nthreads; | |||
| blocking = ((n / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N; | |||
| if (blocking > GEMM_Q) blocking = GEMM_Q; | |||
| for (i = 0; i < n; i += blocking) { | |||
| bk = n - i; | |||
| if (bk > blocking) bk = blocking; | |||
| newarg.m = bk; | |||
| newarg.n = bk; | |||
| newarg.a = a + (i + i * lda) * COMPSIZE; | |||
| info = CNAME(&newarg, NULL, NULL, sa, sb, 0); | |||
| if (info) return info + i; | |||
| if (n - i - bk > 0) { | |||
| #ifndef USE_SIMPLE_THREADED_LEVEL3 | |||
| newarg.m = n - i - bk; | |||
| newarg.k = bk; | |||
| #ifndef LOWER | |||
| newarg.b = a + ( i + (i + bk) * lda) * COMPSIZE; | |||
| #else | |||
| newarg.b = a + ((i + bk) + i * lda) * COMPSIZE; | |||
| #endif | |||
| newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE; | |||
| thread_driver(&newarg, sa, sb); | |||
| #else | |||
| #ifndef LOWER | |||
| newarg.m = bk; | |||
| newarg.n = n - i - bk; | |||
| newarg.a = a + (i + i * lda) * COMPSIZE; | |||
| newarg.b = a + (i + (i + bk) * lda) * COMPSIZE; | |||
| gemm_thread_n(mode | BLAS_TRANSA_T, | |||
| &newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads); | |||
| newarg.n = n - i - bk; | |||
| newarg.k = bk; | |||
| newarg.a = a + ( i + (i + bk) * lda) * COMPSIZE; | |||
| newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE; | |||
| #if 0 | |||
| HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0); | |||
| #else | |||
| syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T, | |||
| &newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads); | |||
| #endif | |||
| #else | |||
| newarg.m = n - i - bk; | |||
| newarg.n = bk; | |||
| newarg.a = a + (i + i * lda) * COMPSIZE; | |||
| newarg.b = a + (i + bk + i * lda) * COMPSIZE; | |||
| gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO, | |||
| &newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads); | |||
| newarg.n = n - i - bk; | |||
| newarg.k = bk; | |||
| newarg.a = a + (i + bk + i * lda) * COMPSIZE; | |||
| newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE; | |||
| #if 0 | |||
| HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0); | |||
| #else | |||
| syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO, | |||
| &newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads); | |||
| #endif | |||
| #endif | |||
| #endif | |||
| } | |||
| } | |||
| return 0; | |||
| } | |||