@@ -1,5 +1,5 @@
/*****************************************************************************
Copyright (c) 2011-2020 , The OpenBLAS Project
Copyright (c) 2011-2024 , The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -32,53 +32,299 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************************/
#include <stdint.h>
#include <sys/auxv.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <sys/auxv.h>
/* If LASX extension instructions supported,
* using core LOONGSON3R5
* If only LSX extension instructions supported,
* using core LOONGSON2K1000
* If neither LASX nor LSX extension instructions supported,
* using core LOONGSONGENERIC (As far as I know, there is no such
* CPU yet)
*/
#define CPU_LA64_GENERIC 0
#define CPU_LA264 1
#define CPU_LA364 2
#define CPU_LA464 3
#define CPU_LA664 4
#define CPU_GENERIC 0
#define CPU_LOONGSON3R5 1
#define CPU_LOONGSON2K1000 2
#define CORE_LA64_GENERIC 0
#define CORE_LA264 1
#define CORE_LA464 2
#define LA_HWCAP_LSX (1U << 4)
#define LA_HWCAP_LASX (1U << 5)
#define LOONGARCH_CFG0 0x00
#define LOONGARCH_CFG2 0x02
#define LOONGARCH_CFG10 0x10
#define LOONGARCH_CFG11 0x11
#define LOONGARCH_CFG12 0x12
#define LOONGARCH_CFG13 0x13
#define LOONGARCH_CFG14 0x14
#define LASX_MASK 1<<7
#define LSX_MASK 1<<6
#define PRID_SERIES_MASK 0xf000
#define PRID_SERIES_LA264 0xa000
#define PRID_SERIES_LA364 0xb000
#define PRID_SERIES_LA464 0xc000
#define PRID_SERIES_LA664 0xd000
#define CACHE_INFO_L1_IU 0
#define CACHE_INFO_L1_D 1
#define CACHE_INFO_L2_IU 2
#define CACHE_INFO_L2_D 3
#define CACHE_INFO_L3_IU 4
#define CACHE_INFO_L3_D 5
#define L1_IU_PRESENT_MASK 0x0001
#define L1_IU_UNITY_MASK 0x0002
#define L1_D_PRESENT_MASK 0x0004
#define L2_IU_PRESENT_MASK 0x0008
#define L2_IU_UNITY_MASK 0x0010
#define L2_D_PRESENT_MASK 0x0080
#define L3_IU_PRESENT_MASK 0x0400
#define L3_IU_UNITY_MASK 0x0800
#define L3_D_PRESENT_MASK 0x4000
#define CACHE_WAY_MINUS_1_MASK 0x0000ffff
#define CACHE_INDEX_LOG2_MASK 0x00ff0000
#define CACHE_LINESIZE_LOG2_MASK 0x7f000000
typedef struct {
int size;
int associative;
int linesize;
int unify;
int present;
} cache_info_t;
/* Using microarchitecture representation */
static char *cpuname[] = {
"LOONGSONGENERIC",
"LOONGSON3R5",
"LOONGSON2K1000"
"LA64_GENERIC",
"LA264", /* Loongson 64bit, 2-issue, Like 2K1000LA */
"LA364", /* Loongson 64bit, 3-issue, Like 2K2000 */
"LA464", /* Loongson 64bit, 4-issue, Like 3A5000, 3C5000L, 3C5000 and 3D5000 */
"LA664" /* Loongson 64bit, 6-issue, Like 3A6000, 3C6000 and 3D6000 */
};
static char *cpuname_lower[] = {
"loongsongeneric",
"loongson3r5",
"loongson2k1000"
"la64_generic",
"la264",
"la364",
"la464",
"la664"
};
static char *corename[] = {
"LA64_GENERIC", /* Implies using scalar instructions for optimization */
"LA264", /* Implies using LSX instructions for optimization */
"LA464", /* Implies using LASX instructions for optimization */
};
static char *corename_lower[] = {
"la64_generic",
"la264",
"la464",
};
int detect(void) {
#ifdef __linux
/*
* Obtain cache and processor identification
* through the cpucfg command.
*/
static void get_cacheinfo(int type, cache_info_t *cacheinfo) {
cache_info_t cache_info;
memset(&cache_info, 0, sizeof(cache_info));
uint32_t reg_10 = 0;
__asm__ volatile (
"cpucfg %0, %1 \n\t"
: "+&r"(reg_10)
: "r"(LOONGARCH_CFG10)
);
switch (type) {
case CACHE_INFO_L1_IU:
if (reg_10 & L1_IU_PRESENT_MASK) {
uint32_t reg_11 = 0;
cache_info.present = reg_10 & L1_IU_PRESENT_MASK;
cache_info.unify = reg_10 & L1_IU_UNITY_MASK;
__asm__ volatile (
"cpucfg %0, %1 \n\t"
: "+&r"(reg_11)
: "r"(LOONGARCH_CFG11)
);
cache_info.associative = (reg_11 & CACHE_WAY_MINUS_1_MASK) + 1;
cache_info.linesize = 1 << ((reg_11 & CACHE_LINESIZE_LOG2_MASK) >> 24);
cache_info.size = cache_info.associative * cache_info.linesize *
(1 << ((reg_11 & CACHE_INDEX_LOG2_MASK) >> 16));
}
break;
case CACHE_INFO_L1_D:
if (reg_10 & L1_D_PRESENT_MASK) {
uint32_t reg_12 = 0;
cache_info.present = reg_10 & L1_D_PRESENT_MASK;
__asm__ volatile (
"cpucfg %0, %1 \n\t"
: "+&r"(reg_12)
: "r"(LOONGARCH_CFG12)
);
cache_info.associative = (reg_12 & CACHE_WAY_MINUS_1_MASK) + 1;
cache_info.linesize = 1 << ((reg_12 & CACHE_LINESIZE_LOG2_MASK) >> 24);
cache_info.size = cache_info.associative * cache_info.linesize *
(1 << ((reg_12 & CACHE_INDEX_LOG2_MASK) >> 16));
}
break;
case CACHE_INFO_L2_IU:
if (reg_10 & L2_IU_PRESENT_MASK) {
uint32_t reg_13 = 0;
cache_info.present = reg_10 & L2_IU_PRESENT_MASK;
cache_info.unify = reg_10 & L2_IU_UNITY_MASK;
__asm__ volatile (
"cpucfg %0, %1 \n\t"
: "+&r"(reg_13)
: "r"(LOONGARCH_CFG13)
);
cache_info.associative = (reg_13 & CACHE_WAY_MINUS_1_MASK) + 1;
cache_info.linesize = 1 << ((reg_13 & CACHE_LINESIZE_LOG2_MASK) >> 24);
cache_info.size = cache_info.associative * cache_info.linesize *
(1 << ((reg_13 & CACHE_INDEX_LOG2_MASK) >> 16));
}
break;
case CACHE_INFO_L2_D:
if (reg_10 & L2_D_PRESENT_MASK) {
cache_info.present = reg_10 & L2_D_PRESENT_MASK;
// No date fetch
}
break;
case CACHE_INFO_L3_IU:
if (reg_10 & L3_IU_PRESENT_MASK) {
uint32_t reg_14 = 0;
cache_info.present = reg_10 & L3_IU_PRESENT_MASK;
cache_info.unify = reg_10 & L3_IU_UNITY_MASK;
__asm__ volatile (
"cpucfg %0, %1 \n\t"
: "+&r"(reg_14)
: "r"(LOONGARCH_CFG14)
);
cache_info.associative = (reg_14 & CACHE_WAY_MINUS_1_MASK) + 1;
cache_info.linesize = 1 << ((reg_14 & CACHE_LINESIZE_LOG2_MASK) >> 24);
cache_info.size = cache_info.associative * cache_info.linesize *
(1 << ((reg_14 & CACHE_INDEX_LOG2_MASK) >> 16));
}
break;
case CACHE_INFO_L3_D:
if (reg_10 & L3_D_PRESENT_MASK) {
cache_info.present = reg_10 & L3_D_PRESENT_MASK;
// No data fetch
}
break;
default:
break;
}
*cacheinfo = cache_info;
}
static uint32_t get_prid() {
uint32_t reg = 0;
__asm__ volatile (
"cpucfg %0, %1 \n\t"
: "+&r"(reg)
: "r"(LOONGARCH_CFG0)
);
return reg;
}
static void get_cpucount(uint32_t *count) {
uint32_t num = 0;
FILE *f = fopen("/proc/cpuinfo", "r");
if (!f) return;
char buf[200];
while (fgets(buf, sizeof(buf), f))
{
if (!strncmp("processor", buf, 9))
num ++;
}
fclose(f);
*count = num;
}
/* Detect whether the OS supports the LASX instruction set */
static int os_support_lasx() {
int hwcap = (int)getauxval(AT_HWCAP);
if (hwcap & LA_HWCAP_LASX)
return CPU_LOONGSON3R5;
else if (hwcap & LA_HWCAP_LSX)
return CPU_LOONGSON2K1000;
return 1;
else
return 0;
}
/* Detect whether the OS supports the LSX instruction set */
static int os_support_lsx() {
int hwcap = (int)getauxval(AT_HWCAP);
if (hwcap & LA_HWCAP_LSX)
return 1;
else
return CPU_GENERIC;
#endif
return CPU_GENERIC;
return 0;
}
int get_coretype(void) {
uint32_t prid = get_prid();
switch (prid & PRID_SERIES_MASK) {
case (PRID_SERIES_LA464):
case (PRID_SERIES_LA664):
if (os_support_lasx())
return CORE_LA464;
else if (os_support_lsx())
return CORE_LA264;
else
return CORE_LA64_GENERIC;
break;
case (PRID_SERIES_LA264):
case (PRID_SERIES_LA364):
if (os_support_lsx())
return CORE_LA264;
else
return CORE_LA64_GENERIC;
break;
default:
return CORE_LA64_GENERIC;
break;
}
}
int get_cputype(void) {
uint32_t prid = get_prid();
switch (prid & PRID_SERIES_MASK) {
case (PRID_SERIES_LA264):
return CPU_LA264;
break;
case (PRID_SERIES_LA364):
return CPU_LA364;
break;
case (PRID_SERIES_LA464):
return CPU_LA464;
break;
case (PRID_SERIES_LA664):
return CPU_LA664;
break;
default:
return CPU_LA64_GENERIC;
break;
}
}
char *get_corename(void) {
return cpuname[detect()];
return corename[get_coretype()];
}
void get_libname(void){
printf("%s", corename_lower[get_coretype()]);
}
void get_architecture(void) {
@@ -86,8 +332,7 @@ void get_architecture(void) {
}
void get_subarchitecture(void) {
int d = detect();
printf("%s", cpuname[d]);
printf("%s", cpuname[get_cputype()]);
}
void get_subdirname(void) {
@@ -95,50 +340,69 @@ void get_subdirname(void) {
}
void get_cpuconfig(void) {
uint32_t hwcaps = 0;
int d = detect();
switch (d) {
case CPU_LOONGSON3R5:
printf("#define LOONGSON3R5\n");
printf("#define L1_DATA_SIZE 65536\n");
printf("#define L1_DATA_LINESIZE 64\n");
printf("#define L2_SIZE 1048576\n");
printf("#define L2_LINESIZE 64\n");
printf("#define DTB_DEFAULT_ENTRIES 64\n");
printf("#define DTB_SIZE 4096\n");
printf("#define L2_ASSOCIATIVE 16\n");
break;
cache_info_t info;
uint32_t num_cores = 0;
case CPU_LOONGSON2K1000:
printf("#define LOONGSON2K1000\n");
printf("#define L1_DATA_SIZE 65536\n");
printf("#define L1_DATA_LINESIZE 64\n");
printf("#define L2_SIZE 262144\n");
printf("#define L2_LINESIZE 64\n");
printf("#define DTB_DEFAULT_ENTRIES 64\n");
printf("#define DTB_SIZE 4096\n");
printf("#define L2_ASSOCIATIVE 16\n");
break;
printf("#define %s\n", corename[get_coretype()]); // Core name
default:
printf("#define LOONGSONGENERIC\n");
printf("#define L1_DATA_SIZE 65536\n");
printf("#define L1_DATA_LINESIZE 64\n");
printf("#define L2_SIZE 262144\n");
printf("#define L2_LINESIZE 64\n");
printf("#define DTB_DEFAULT_ENTRIES 64\n");
printf("#define DTB_SIZE 4096\n");
printf("#define L2_ASSOCIATIVE 16\n");
break;
printf("#define CPU_NAME %s\n", cpuname[get_cputype()]); // Cpu microarchitecture name
get_cacheinfo(CACHE_INFO_L1_IU, &info);
if (info.present) {
if (info.unify) { // Unified cache, without distinguishing between instructions and data
printf("#define L1_SIZE %d\n", info.size);
printf("#define L1_ASSOCIATIVE %d\n", info.associative);
printf("#define L1_LINESIZE %d\n", info.linesize);
} else {
printf("#define L1_CODE_SIZE %d\n", info.size);
printf("#define L1_CODE_ASSOCIATIVE %d\n", info.associative);
printf("#define L1_CODE_LINESIZE %d\n", info.linesize);
}
}
hwcaps = (uint32_t)getauxval( AT_HWCAP );
if (hwcaps & LA_HWCAP_LSX) printf("#define HAVE_LSX\n");
if (hwcaps & LA_HWCAP_LASX) printf("#define HAVE_LASX\n");
}
if (!info.unify) {
get_cacheinfo(CACHE_INFO_L1_D, &info);
if (info.present) {
printf("#define L1_DATA_SIZE %d\n", info.size);
printf("#define L1_DATA_ASSOCIATIVE %d\n", info.associative);
printf("#define L1_DATA_LINESIZE %d\n", info.linesize);
}
}
void get_libname(void){
int d = detect();
printf("%s", cpuname_lower[d]);
get_cacheinfo(CACHE_INFO_L2_IU, &info);
if (info.present > 0) {
if (info.unify) {
printf("#define L2_SIZE %d\n", info.size);
printf("#define L2_ASSOCIATIVE %d\n", info.associative);
printf("#define L2_LINESIZE %d\n", info.linesize);
} else {
printf("#define L2_CODE_SIZE %d\n", info.size);
printf("#define L2_CODE_ASSOCIATIVE %d\n", info.associative);
printf("#define L2_CODE_LINESIZE %d\n", info.linesize);
}
}
get_cacheinfo(CACHE_INFO_L3_IU, &info);
if (info.present > 0) {
if (info.unify) {
printf("#define L3_SIZE %d\n", info.size);
printf("#define L3_ASSOCIATIVE %d\n", info.associative);
printf("#define L3_LINESIZE %d\n", info.linesize);
} else {
printf("#define L3_CODE_SIZE %d\n", info.size);
printf("#define L3_CODE_ASSOCIATIVE %d\n", info.associative);
printf("#define L3_CODE_LINESIZE %d\n", info.linesize);
}
}
if(os_support_lsx) printf("#define HAVE_LSX\n");
if(os_support_lasx) printf("#define HAVE_LASX\n");
get_cpucount(&num_cores);
if (num_cores)
printf("#define NUM_CORES %d\n", num_cores);
//TODO: It’s unclear what this entry represents, but it is indeed necessary.
//It has been set based on reference to other platforms.
printf("#define DTB_DEFAULT_ENTRIES 64\n");
}