|
|
|
@@ -0,0 +1,85 @@ |
|
|
|
// reproduce segfault in zhemv() from zsymv_L_sse2.S |
|
|
|
// |
|
|
|
|
|
|
|
#include <stdlib.h> |
|
|
|
#include <stdio.h> |
|
|
|
#include <math.h> |
|
|
|
#include <string.h> |
|
|
|
#include <complex.h> |
|
|
|
#include <sys/mman.h> |
|
|
|
|
|
|
|
#define CALL_ZHEMV zhemv_ |
|
|
|
|
|
|
|
void zhemv_(char *UPLO, int *N, double *alpha, double *A, int *LDA, |
|
|
|
double *X, int *INCX, double *beta, double *Y, int *INCY); |
|
|
|
|
|
|
|
int main () { |
|
|
|
|
|
|
|
// zhemv parameters |
|
|
|
char uplo = 'L'; |
|
|
|
int n = 14; |
|
|
|
int lda = 16; |
|
|
|
int incx = 1; |
|
|
|
int incy = 1; |
|
|
|
double *A, *X, *Y; |
|
|
|
double alpha[] = {1, 0}; |
|
|
|
double beta[] = {0, 0}; |
|
|
|
|
|
|
|
// other parameters |
|
|
|
int i, j; |
|
|
|
double *data, *data_end, *no_access; |
|
|
|
double real, imag; |
|
|
|
int size; |
|
|
|
size_t len; |
|
|
|
int A_offset; |
|
|
|
|
|
|
|
size = sizeof(complex double); |
|
|
|
len = lda * lda * size; |
|
|
|
|
|
|
|
// allocate memory for data |
|
|
|
// use mmap address hints to set up inaccessible memory section following data |
|
|
|
no_access = mmap(NULL, len, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
|
|
|
data = mmap(no_access, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
|
|
|
data_end = data + (lda * lda * 2); |
|
|
|
printf("data start/end: %p/%p. Blocked region starts at %p.\n", data, data_end, no_access); |
|
|
|
|
|
|
|
// set up pointer offsets into data |
|
|
|
A_offset = (lda + 1) * 2; |
|
|
|
A = data + A_offset * 2; // A starts in the third column of data matrix |
|
|
|
X = data + A_offset + 2; // X is the second column of data matrix |
|
|
|
Y = (double *)malloc(n * incy * size); // Y is stored elsewhere |
|
|
|
printf("Address of data: %p; A: %p; X: %p; Y: %p.\n", data, A, X, Y); |
|
|
|
|
|
|
|
|
|
|
|
// hermitian matrix |
|
|
|
srand(lda); |
|
|
|
for (j=0; j<lda; j++) { |
|
|
|
real = (double) rand() / RAND_MAX; |
|
|
|
imag = 0; |
|
|
|
data[(j*lda + j) * 2] = real; |
|
|
|
data[(j*lda + j) * 2 + 1] = imag; |
|
|
|
for (i=j+1; i<lda; i++) { |
|
|
|
real = (double) rand() / RAND_MAX; |
|
|
|
imag = (double) rand() / RAND_MAX; |
|
|
|
data[(j*lda + i) * 2] = real; |
|
|
|
data[(j*lda + i) * 2 + 1] = imag; |
|
|
|
data[(i*lda + j) * 2] = real; |
|
|
|
data[(i*lda + j) * 2 + 1] = -imag; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
for (int i=0; i<incy*n*2; i++) { |
|
|
|
Y[i] = 0; |
|
|
|
} |
|
|
|
|
|
|
|
CALL_ZHEMV(&uplo, &n, alpha, A, &lda, X, &incx, beta, Y, &incy); |
|
|
|
|
|
|
|
printf("Finished call to zhemv.\n"); |
|
|
|
|
|
|
|
munmap(no_access, len); |
|
|
|
munmap(data, len); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|