You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

level3_thread.c 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #ifndef CACHE_LINE_SIZE
  39. #define CACHE_LINE_SIZE 8
  40. #endif
  41. #ifndef DIVIDE_RATE
  42. #define DIVIDE_RATE 2
  43. #endif
  44. #ifndef SWITCH_RATIO
  45. #define SWITCH_RATIO 2
  46. #endif
  47. #ifndef GEMM_LOCAL
  48. #if defined(NN)
  49. #define GEMM_LOCAL GEMM_NN
  50. #elif defined(NT)
  51. #define GEMM_LOCAL GEMM_NT
  52. #elif defined(NR)
  53. #define GEMM_LOCAL GEMM_NR
  54. #elif defined(NC)
  55. #define GEMM_LOCAL GEMM_NC
  56. #elif defined(TN)
  57. #define GEMM_LOCAL GEMM_TN
  58. #elif defined(TT)
  59. #define GEMM_LOCAL GEMM_TT
  60. #elif defined(TR)
  61. #define GEMM_LOCAL GEMM_TR
  62. #elif defined(TC)
  63. #define GEMM_LOCAL GEMM_TC
  64. #elif defined(RN)
  65. #define GEMM_LOCAL GEMM_RN
  66. #elif defined(RT)
  67. #define GEMM_LOCAL GEMM_RT
  68. #elif defined(RR)
  69. #define GEMM_LOCAL GEMM_RR
  70. #elif defined(RC)
  71. #define GEMM_LOCAL GEMM_RC
  72. #elif defined(CN)
  73. #define GEMM_LOCAL GEMM_CN
  74. #elif defined(CT)
  75. #define GEMM_LOCAL GEMM_CT
  76. #elif defined(CR)
  77. #define GEMM_LOCAL GEMM_CR
  78. #elif defined(CC)
  79. #define GEMM_LOCAL GEMM_CC
  80. #endif
  81. #endif
  82. typedef struct {
  83. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  84. } job_t;
  85. #ifndef BETA_OPERATION
  86. #ifndef COMPLEX
  87. #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
  88. GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
  89. BETA[0], NULL, 0, NULL, 0, \
  90. (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
  91. #else
  92. #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
  93. GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
  94. BETA[0], BETA[1], NULL, 0, NULL, 0, \
  95. (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC)
  96. #endif
  97. #endif
  98. #ifndef ICOPY_OPERATION
  99. #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
  100. defined(RN) || defined(RT) || defined(RC) || defined(RR)
  101. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  102. #else
  103. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  104. #endif
  105. #endif
  106. #ifndef OCOPY_OPERATION
  107. #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
  108. defined(NR) || defined(TR) || defined(CR) || defined(RR)
  109. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  110. #else
  111. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  112. #endif
  113. #endif
  114. #ifndef KERNEL_FUNC
  115. #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
  116. #define KERNEL_FUNC GEMM_KERNEL_N
  117. #endif
  118. #if defined(CN) || defined(CT) || defined(RN) || defined(RT)
  119. #define KERNEL_FUNC GEMM_KERNEL_L
  120. #endif
  121. #if defined(NC) || defined(TC) || defined(NR) || defined(TR)
  122. #define KERNEL_FUNC GEMM_KERNEL_R
  123. #endif
  124. #if defined(CC) || defined(CR) || defined(RC) || defined(RR)
  125. #define KERNEL_FUNC GEMM_KERNEL_B
  126. #endif
  127. #endif
  128. #ifndef KERNEL_OPERATION
  129. #ifndef COMPLEX
  130. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  131. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  132. #else
  133. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  134. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  135. #endif
  136. #endif
  137. #ifndef FUSED_KERNEL_OPERATION
  138. #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
  139. defined(NR) || defined(TR) || defined(CR) || defined(RR)
  140. #ifndef COMPLEX
  141. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  142. FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \
  143. (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  144. #else
  145. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  146. FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
  147. (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  148. #endif
  149. #else
  150. #ifndef COMPLEX
  151. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  152. FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \
  153. (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  154. #else
  155. #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \
  156. FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \
  157. (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC)
  158. #endif
  159. #endif
  160. #endif
  161. #ifndef A
  162. #define A args -> a
  163. #endif
  164. #ifndef LDA
  165. #define LDA args -> lda
  166. #endif
  167. #ifndef B
  168. #define B args -> b
  169. #endif
  170. #ifndef LDB
  171. #define LDB args -> ldb
  172. #endif
  173. #ifndef C
  174. #define C args -> c
  175. #endif
  176. #ifndef LDC
  177. #define LDC args -> ldc
  178. #endif
  179. #ifndef M
  180. #define M args -> m
  181. #endif
  182. #ifndef N
  183. #define N args -> n
  184. #endif
  185. #ifndef K
  186. #define K args -> k
  187. #endif
  188. #ifdef TIMING
  189. #define START_RPCC() rpcc_counter = rpcc()
  190. #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
  191. #else
  192. #define START_RPCC()
  193. #define STOP_RPCC(COUNTER)
  194. #endif
  195. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  196. FLOAT *buffer[DIVIDE_RATE];
  197. BLASLONG k, lda, ldb, ldc;
  198. BLASLONG m_from, m_to, n_from, n_to, N_from, N_to;
  199. FLOAT *alpha, *beta;
  200. FLOAT *a, *b, *c;
  201. job_t *job = (job_t *)args -> common;
  202. BLASLONG xxx, bufferside;
  203. BLASLONG ls, min_l, jjs, min_jj;
  204. BLASLONG is, min_i, div_n;
  205. BLASLONG i, current;
  206. BLASLONG l1stride, l2size;
  207. #ifdef TIMING
  208. BLASULONG rpcc_counter;
  209. BLASULONG copy_A = 0;
  210. BLASULONG copy_B = 0;
  211. BLASULONG kernel = 0;
  212. BLASULONG waiting1 = 0;
  213. BLASULONG waiting2 = 0;
  214. BLASULONG waiting3 = 0;
  215. BLASULONG waiting6[MAX_CPU_NUMBER];
  216. BLASULONG ops = 0;
  217. for (i = 0; i < args -> nthreads; i++) waiting6[i] = 0;
  218. #endif
  219. k = K;
  220. a = (FLOAT *)A;
  221. b = (FLOAT *)B;
  222. c = (FLOAT *)C;
  223. lda = LDA;
  224. ldb = LDB;
  225. ldc = LDC;
  226. alpha = (FLOAT *)args -> alpha;
  227. beta = (FLOAT *)args -> beta;
  228. m_from = 0;
  229. m_to = M;
  230. if (range_m) {
  231. m_from = range_m[0];
  232. m_to = range_m[1];
  233. }
  234. n_from = 0;
  235. n_to = N;
  236. N_from = 0;
  237. N_to = N;
  238. if (range_n) {
  239. n_from = range_n[mypos + 0];
  240. n_to = range_n[mypos + 1];
  241. N_from = range_n[0];
  242. N_to = range_n[args -> nthreads];
  243. }
  244. if (beta) {
  245. #ifndef COMPLEX
  246. if (beta[0] != ONE)
  247. #else
  248. if ((beta[0] != ONE) || (beta[1] != ZERO))
  249. #endif
  250. BETA_OPERATION(m_from, m_to, N_from, N_to, beta, c, ldc);
  251. }
  252. if ((k == 0) || (alpha == NULL)) return 0;
  253. if ((alpha[0] == ZERO)
  254. #ifdef COMPLEX
  255. && (alpha[1] == ZERO)
  256. #endif
  257. ) return 0;
  258. l2size = GEMM_P * GEMM_Q;
  259. #if 0
  260. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld N_from : %ld N_to : %ld\n",
  261. mypos, m_from, m_to, n_from, n_to, N_from, N_to);
  262. fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R);
  263. #endif
  264. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  265. buffer[0] = sb;
  266. for (i = 1; i < DIVIDE_RATE; i++) {
  267. buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
  268. }
  269. for(ls = 0; ls < k; ls += min_l){
  270. min_l = k - ls;
  271. if (min_l >= GEMM_Q * 2) {
  272. min_l = GEMM_Q;
  273. } else {
  274. if (min_l > GEMM_Q) min_l = (min_l + 1) / 2;
  275. }
  276. l1stride = 1;
  277. min_i = m_to - m_from;
  278. if (min_i >= GEMM_P * 2) {
  279. min_i = GEMM_P;
  280. } else {
  281. if (min_i > GEMM_P) {
  282. min_i = (min_i / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  283. } else {
  284. if (args -> nthreads == 1) l1stride = 0;
  285. }
  286. }
  287. START_RPCC();
  288. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
  289. STOP_RPCC(copy_A);
  290. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  291. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  292. START_RPCC();
  293. /* Make sure if no one is using buffer */
  294. for (i = 0; i < args -> nthreads; i++)
  295. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;};
  296. STOP_RPCC(waiting1);
  297. #if defined(FUSED_GEMM) && !defined(TIMING)
  298. FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha,
  299. sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls);
  300. #else
  301. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  302. min_jj = MIN(n_to, xxx + div_n) - jjs;
  303. #if defined(BULLDOZER) && defined(ARCH_X86_64) && defined(DOUBLE) && !defined(COMPLEX)
  304. if (min_jj >= 12*GEMM_UNROLL_N) min_jj = 12*GEMM_UNROLL_N;
  305. else
  306. if (min_jj >= 6*GEMM_UNROLL_N) min_jj = 6*GEMM_UNROLL_N;
  307. else
  308. if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N;
  309. else
  310. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  311. #else
  312. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  313. #endif
  314. START_RPCC();
  315. OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs,
  316. buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride);
  317. STOP_RPCC(copy_B);
  318. START_RPCC();
  319. KERNEL_OPERATION(min_i, min_jj, min_l, alpha,
  320. sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride,
  321. c, ldc, m_from, jjs);
  322. STOP_RPCC(kernel);
  323. #ifdef TIMING
  324. ops += 2 * min_i * min_jj * min_l;
  325. #endif
  326. }
  327. #endif
  328. for (i = 0; i < args -> nthreads; i++) job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  329. WMB;
  330. }
  331. current = mypos;
  332. do {
  333. current ++;
  334. if (current >= args -> nthreads) current = 0;
  335. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  336. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  337. if (current != mypos) {
  338. START_RPCC();
  339. /* thread has to wait */
  340. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  341. STOP_RPCC(waiting2);
  342. START_RPCC();
  343. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  344. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  345. c, ldc, m_from, xxx);
  346. STOP_RPCC(kernel);
  347. #ifdef TIMING
  348. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  349. #endif
  350. }
  351. if (m_to - m_from == min_i) {
  352. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  353. }
  354. }
  355. } while (current != mypos);
  356. for(is = m_from + min_i; is < m_to; is += min_i){
  357. min_i = m_to - is;
  358. if (min_i >= GEMM_P * 2) {
  359. min_i = GEMM_P;
  360. } else
  361. if (min_i > GEMM_P) {
  362. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  363. }
  364. START_RPCC();
  365. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  366. STOP_RPCC(copy_A);
  367. current = mypos;
  368. do {
  369. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  370. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  371. START_RPCC();
  372. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha,
  373. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  374. c, ldc, is, xxx);
  375. STOP_RPCC(kernel);
  376. #ifdef TIMING
  377. ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l;
  378. #endif
  379. if (is + min_i >= m_to) {
  380. /* Thread doesn't need this buffer any more */
  381. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  382. WMB;
  383. }
  384. }
  385. current ++;
  386. if (current >= args -> nthreads) current = 0;
  387. } while (current != mypos);
  388. }
  389. }
  390. START_RPCC();
  391. for (i = 0; i < args -> nthreads; i++) {
  392. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  393. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  394. }
  395. }
  396. STOP_RPCC(waiting3);
  397. #ifdef TIMING
  398. BLASLONG waiting = waiting1 + waiting2 + waiting3;
  399. BLASLONG total = copy_A + copy_B + kernel + waiting;
  400. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2f Copy_B : %6.2f Wait1 : %6.2f Wait2 : %6.2f Wait3 : %6.2f Kernel : %6.2f",
  401. mypos, (double)copy_A /(double)total * 100., (double)copy_B /(double)total * 100.,
  402. (double)waiting1 /(double)total * 100.,
  403. (double)waiting2 /(double)total * 100.,
  404. (double)waiting3 /(double)total * 100.,
  405. (double)ops/(double)kernel / 4. * 100.);
  406. #if 0
  407. fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n",
  408. mypos, copy_A, copy_B, waiting);
  409. fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n",
  410. mypos,
  411. (double)waiting1/(double)waiting * 100.,
  412. (double)waiting2/(double)waiting * 100.,
  413. (double)waiting3/(double)waiting * 100.);
  414. #endif
  415. fprintf(stderr, "\n");
  416. #endif
  417. return 0;
  418. }
  419. static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG
  420. *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  421. blas_arg_t newarg;
  422. job_t job[MAX_CPU_NUMBER];
  423. blas_queue_t queue[MAX_CPU_NUMBER];
  424. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  425. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  426. BLASLONG num_cpu_m, num_cpu_n;
  427. BLASLONG nthreads = args -> nthreads;
  428. BLASLONG width, i, j, k, js;
  429. BLASLONG m, n, n_from, n_to;
  430. int mode;
  431. #ifndef COMPLEX
  432. #ifdef XDOUBLE
  433. mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE;
  434. #elif defined(DOUBLE)
  435. mode = BLAS_DOUBLE | BLAS_REAL | BLAS_NODE;
  436. #else
  437. mode = BLAS_SINGLE | BLAS_REAL | BLAS_NODE;
  438. #endif
  439. #else
  440. #ifdef XDOUBLE
  441. mode = BLAS_XDOUBLE | BLAS_COMPLEX | BLAS_NODE;
  442. #elif defined(DOUBLE)
  443. mode = BLAS_DOUBLE | BLAS_COMPLEX | BLAS_NODE;
  444. #else
  445. mode = BLAS_SINGLE | BLAS_COMPLEX | BLAS_NODE;
  446. #endif
  447. #endif
  448. newarg.m = args -> m;
  449. newarg.n = args -> n;
  450. newarg.k = args -> k;
  451. newarg.a = args -> a;
  452. newarg.b = args -> b;
  453. newarg.c = args -> c;
  454. newarg.lda = args -> lda;
  455. newarg.ldb = args -> ldb;
  456. newarg.ldc = args -> ldc;
  457. newarg.alpha = args -> alpha;
  458. newarg.beta = args -> beta;
  459. newarg.nthreads = args -> nthreads;
  460. newarg.common = (void *)job;
  461. #ifdef PARAMTEST
  462. newarg.gemm_p = args -> gemm_p;
  463. newarg.gemm_q = args -> gemm_q;
  464. newarg.gemm_r = args -> gemm_r;
  465. #endif
  466. if (!range_m) {
  467. range_M[0] = 0;
  468. m = args -> m;
  469. } else {
  470. range_M[0] = range_m[0];
  471. m = range_m[1] - range_m[0];
  472. }
  473. num_cpu_m = 0;
  474. while (m > 0){
  475. width = blas_quickdivide(m + nthreads - num_cpu_m - 1, nthreads - num_cpu_m);
  476. m -= width;
  477. if (m < 0) width = width + m;
  478. range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width;
  479. num_cpu_m ++;
  480. }
  481. for (i = 0; i < num_cpu_m; i++) {
  482. queue[i].mode = mode;
  483. queue[i].routine = inner_thread;
  484. queue[i].args = &newarg;
  485. queue[i].range_m = &range_M[i];
  486. queue[i].range_n = &range_N[0];
  487. queue[i].sa = NULL;
  488. queue[i].sb = NULL;
  489. queue[i].next = &queue[i + 1];
  490. }
  491. queue[0].sa = sa;
  492. queue[0].sb = sb;
  493. if (!range_n) {
  494. n_from = 0;
  495. n_to = args -> n;
  496. } else {
  497. n_from = range_n[0];
  498. n_to = range_n[1];
  499. }
  500. for(js = n_from; js < n_to; js += GEMM_R * nthreads){
  501. n = n_to - js;
  502. if (n > GEMM_R * nthreads) n = GEMM_R * nthreads;
  503. range_N[0] = js;
  504. num_cpu_n = 0;
  505. while (n > 0){
  506. width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n);
  507. n -= width;
  508. if (n < 0) width = width + n;
  509. range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width;
  510. num_cpu_n ++;
  511. }
  512. for (j = 0; j < num_cpu_m; j++) {
  513. for (i = 0; i < num_cpu_m; i++) {
  514. for (k = 0; k < DIVIDE_RATE; k++) {
  515. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  516. }
  517. }
  518. }
  519. queue[num_cpu_m - 1].next = NULL;
  520. exec_blas(num_cpu_m, queue);
  521. }
  522. return 0;
  523. }
  524. int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  525. BLASLONG m = args -> m;
  526. BLASLONG n = args -> n;
  527. BLASLONG nthreads = args -> nthreads;
  528. BLASLONG divN, divT;
  529. int mode;
  530. if (nthreads == 1) {
  531. GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
  532. return 0;
  533. }
  534. if (range_m) {
  535. BLASLONG m_from = *(((BLASLONG *)range_m) + 0);
  536. BLASLONG m_to = *(((BLASLONG *)range_m) + 1);
  537. m = m_to - m_from;
  538. }
  539. if (range_n) {
  540. BLASLONG n_from = *(((BLASLONG *)range_n) + 0);
  541. BLASLONG n_to = *(((BLASLONG *)range_n) + 1);
  542. n = n_to - n_from;
  543. }
  544. if ((args -> m < nthreads * SWITCH_RATIO) || (args -> n < nthreads * SWITCH_RATIO)) {
  545. GEMM_LOCAL(args, range_m, range_n, sa, sb, 0);
  546. return 0;
  547. }
  548. divT = nthreads;
  549. divN = 1;
  550. #if 0
  551. while ((GEMM_P * divT > m * SWITCH_RATIO) && (divT > 1)) {
  552. do {
  553. divT --;
  554. divN = 1;
  555. while (divT * divN < nthreads) divN ++;
  556. } while ((divT * divN != nthreads) && (divT > 1));
  557. }
  558. #endif
  559. // fprintf(stderr, "divN = %4ld divT = %4ld\n", divN, divT);
  560. args -> nthreads = divT;
  561. if (divN == 1){
  562. gemm_driver(args, range_m, range_n, sa, sb, 0);
  563. } else {
  564. #ifndef COMPLEX
  565. #ifdef XDOUBLE
  566. mode = BLAS_XDOUBLE | BLAS_REAL;
  567. #elif defined(DOUBLE)
  568. mode = BLAS_DOUBLE | BLAS_REAL;
  569. #else
  570. mode = BLAS_SINGLE | BLAS_REAL;
  571. #endif
  572. #else
  573. #ifdef XDOUBLE
  574. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  575. #elif defined(DOUBLE)
  576. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  577. #else
  578. mode = BLAS_SINGLE | BLAS_COMPLEX;
  579. #endif
  580. #endif
  581. #if defined(TN) || defined(TT) || defined(TR) || defined(TC) || \
  582. defined(CN) || defined(CT) || defined(CR) || defined(CC)
  583. mode |= (BLAS_TRANSA_T);
  584. #endif
  585. #if defined(NT) || defined(TT) || defined(RT) || defined(CT) || \
  586. defined(NC) || defined(TC) || defined(RC) || defined(CC)
  587. mode |= (BLAS_TRANSB_T);
  588. #endif
  589. #ifdef OS_WINDOWS
  590. gemm_thread_n(mode, args, range_m, range_n, GEMM_LOCAL, sa, sb, divN);
  591. #else
  592. gemm_thread_n(mode, args, range_m, range_n, gemm_driver, sa, sb, divN);
  593. #endif
  594. }
  595. return 0;
  596. }