You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Makefile.arm64 3.4 kB

Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
7 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. ifneq ($(C_COMPILER), PGI)
  2. ifneq ($(GCCVERSIONGT4), 1)
  3. CCOMMON_OPT += -march=armv8-a
  4. ifneq ($(F_COMPILER), NAG)
  5. FCOMMON_OPT += -march=armv8-a
  6. endif
  7. else
  8. ifeq ($(CORE), ARMV8)
  9. CCOMMON_OPT += -march=armv8-a
  10. ifneq ($(F_COMPILER), NAG)
  11. FCOMMON_OPT += -march=armv8-a
  12. endif
  13. endif
  14. ifeq ($(CORE), CORTEXA53)
  15. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  16. ifneq ($(F_COMPILER), NAG)
  17. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  18. endif
  19. endif
  20. ifeq ($(CORE), CORTEXA57)
  21. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a57
  22. ifneq ($(F_COMPILER), NAG)
  23. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a57
  24. endif
  25. endif
  26. ifeq ($(CORE), CORTEXA72)
  27. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  28. ifneq ($(F_COMPILER), NAG)
  29. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  30. endif
  31. endif
  32. ifeq ($(CORE), CORTEXA73)
  33. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a73
  34. ifneq ($(F_COMPILER), NAG)
  35. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a73
  36. endif
  37. endif
  38. # Use a72 tunings because Neoverse-N1 is only available
  39. # in GCC>=9
  40. ifeq ($(CORE), NEOVERSEN1)
  41. ifeq ($(GCCVERSIONGTEQ7), 1)
  42. ifeq ($(GCCVERSIONGTEQ9), 1)
  43. CCOMMON_OPT += -march=armv8.2-a -mtune=neoverse-n1
  44. ifneq ($(F_COMPILER), NAG)
  45. FCOMMON_OPT += -march=armv8.2-a -mtune=neoverse-n1
  46. endif
  47. else
  48. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  49. ifneq ($(F_COMPILER), NAG)
  50. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  51. endif
  52. endif
  53. else
  54. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  55. ifneq ($(F_COMPILER), NAG)
  56. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  57. endif
  58. endif
  59. endif
  60. # Use a53 tunings because a55 is only available in GCC>=8.1
  61. ifeq ($(CORE), CORTEXA55)
  62. ifeq ($(GCCVERSIONGTEQ7), 1)
  63. ifeq ($(GCCVERSIONGTEQ8), 1)
  64. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a55
  65. ifneq ($(F_COMPILER), NAG)
  66. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a55
  67. endif
  68. else
  69. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a53
  70. ifneq ($(F_COMPILER), NAG)
  71. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a53
  72. endif
  73. endif
  74. else
  75. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  76. ifneq ($(F_COMPILER), NAG)
  77. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  78. endif
  79. endif
  80. endif
  81. ifeq ($(CORE), THUNDERX)
  82. CCOMMON_OPT += -march=armv8-a -mtune=thunderx
  83. ifneq ($(F_COMPILER), NAG)
  84. FCOMMON_OPT += -march=armv8-a -mtune=thunderx
  85. endif
  86. endif
  87. ifeq ($(CORE), FALKOR)
  88. CCOMMON_OPT += -march=armv8-a -mtune=falkor
  89. ifneq ($(F_COMPILER), NAG)
  90. FCOMMON_OPT += -march=armv8-a -mtune=falkor
  91. endif
  92. endif
  93. ifeq ($(CORE), THUNDERX2T99)
  94. CCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  95. ifneq ($(F_COMPILER), NAG)
  96. FCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  97. endif
  98. endif
  99. ifeq ($(CORE), THUNDERX3T110)
  100. ifeq ($(GCCVERSIONGTEQ10), 1)
  101. CCOMMON_OPT += -march=armv8.3-a -mtune=thunderx3t110
  102. ifneq ($(F_COMPILER), NAG)
  103. FCOMMON_OPT += -march=armv8.3-a -mtune=thunderx3t110
  104. endif
  105. else
  106. CCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  107. ifneq ($(F_COMPILER), NAG)
  108. FCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  109. endif
  110. endif
  111. endif
  112. ifeq ($(CORE), VORTEX)
  113. CCOMMON_OPT += -march=armv8.3-a
  114. ifneq ($(F_COMPILER), NAG)
  115. FCOMMON_OPT += -march=armv8.3-a
  116. endif
  117. endif
  118. ifeq ($(GCCVERSIONGTEQ9), 1)
  119. ifeq ($(CORE), TSV110)
  120. CCOMMON_OPT += -march=armv8.2-a -mtune=tsv110
  121. ifneq ($(F_COMPILER), NAG)
  122. FCOMMON_OPT += -march=armv8.2-a -mtune=tsv110
  123. endif
  124. endif
  125. endif
  126. ifeq ($(GCCVERSIONGTEQ9), 1)
  127. ifeq ($(CORE), EMAG8180)
  128. CCOMMON_OPT += -march=armv8-a -mtune=emag
  129. ifneq ($(F_COMPILER), NAG)
  130. FCOMMON_OPT += -march=armv8-a -mtune=emag
  131. endif
  132. endif
  133. endif
  134. endif
  135. endif