|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "session/session_basic.h"
- #include <utility>
- #include <algorithm>
- #include <unordered_map>
- #include <unordered_set>
- #include "pipeline/parse/data_converter.h"
- #include "ir/manager.h"
- #include "operator/ops.h"
- #include "common/trans.h"
- #include "utils/context/ms_context.h"
- #include "utils/config_manager.h"
- #include "session/anf_runtime_algorithm.h"
- #include "kernel/oplib/oplib.h"
- #include "pre_activate/common/common_backend_optimization.h"
- #include "pre_activate/pass/const_input_to_attr_registry.h"
- #include "pre_activate/common/helper.h"
- #include "common/utils.h"
- #include "ir/dtype.h"
-
- namespace mindspore {
- namespace session {
- namespace {
- const int kSummaryGetItem = 2;
- void GetSummaryNodes(const KernelGraph *graph, std::unordered_map<std::string, std::pair<AnfNodePtr, int>> *summary) {
- MS_LOG(DEBUG) << "Update summary Start";
- MS_EXCEPTION_IF_NULL(graph);
- MS_EXCEPTION_IF_NULL(summary);
- summary->clear();
- auto apply_list = TopoSort(graph->get_return());
- for (auto &n : apply_list) {
- MS_EXCEPTION_IF_NULL(n);
- if (IsPrimitiveCNode(n, prim::kPrimScalarSummary) || IsPrimitiveCNode(n, prim::kPrimTensorSummary) ||
- IsPrimitiveCNode(n, prim::kPrimImageSummary)) {
- int index = 0;
- auto cnode = n->cast<CNodePtr>();
- MS_EXCEPTION_IF_NULL(cnode);
- if (cnode->inputs().size() <= kSummaryGetItem) {
- MS_LOG(EXCEPTION) << "the node Summary should have 2 inputs at least!";
- }
- auto node = cnode->input(kSummaryGetItem);
- MS_EXCEPTION_IF_NULL(node);
- if (IsPrimitiveCNode(node, prim::kPrimTupleGetItem)) {
- auto c = node->cast<CNodePtr>();
- MS_EXCEPTION_IF_NULL(c);
- if (c->inputs().size() != kTupleGetItemInputSize) {
- MS_LOG(EXCEPTION) << "the node tuple_get_item must have 2 inputs!";
- }
- MS_EXCEPTION_IF_NULL(c->input(kInputNodeOutputIndexInTupleGetItem));
- auto value_node = c->input(kInputNodeOutputIndexInTupleGetItem)->cast<ValueNodePtr>();
- auto value = value_node->value();
- MS_EXCEPTION_IF_NULL(value);
- Int32ImmPtr int_imm_ptr = value->cast<Int32ImmPtr>();
- MS_EXCEPTION_IF_NULL(int_imm_ptr);
- index = int_imm_ptr->value();
- node = c->input(kRealInputNodeIndexInTupleGetItem);
- }
- std::pair<AnfNodePtr, int> output_pair(node, index);
- // get full name with scope will add scalar or tensor or image summary tag.
- (*summary)[n->fullname_with_scope()] = output_pair;
- }
- }
- MS_LOG(DEBUG) << "Update summary end size: " << (*summary).size();
- }
-
- bool ExistSummaryNode(const KernelGraph *graph) {
- auto ret = graph->get_return();
- MS_EXCEPTION_IF_NULL(ret);
- auto all_nodes = DeepLinkedGraphSearch(ret);
- for (auto &n : all_nodes) {
- if (IsPrimitiveCNode(n, prim::kPrimScalarSummary) || IsPrimitiveCNode(n, prim::kPrimTensorSummary) ||
- IsPrimitiveCNode(n, prim::kPrimImageSummary)) {
- return true;
- }
- }
- return false;
- }
-
- BaseRef CreateOneTensor(const AnfNodePtr &node, size_t output_index, const KernelGraph &graph,
- const std::vector<tensor::TensorPtr> &input_tensors) {
- MS_EXCEPTION_IF_NULL(node);
- MS_LOG(INFO) << "create tensor for output[" << node->DebugString() << "] index[" << output_index << "]";
- // if node is a value node, no need sync addr from device to host
- if (!AnfAlgo::OutputAddrExist(node, output_index)) {
- if (node->isa<ValueNode>()) {
- auto value_node = node->cast<ValueNodePtr>();
- MS_EXCEPTION_IF_NULL(value_node);
- return value_node->value();
- }
- if (node->isa<Parameter>()) {
- for (size_t input_idx = 0; input_idx < graph.inputs().size(); input_idx++) {
- if (input_idx > input_tensors.size()) {
- MS_LOG(EXCEPTION) << "input idx:" << input_idx << "out of range:" << input_tensors.size();
- }
- if (graph.inputs()[input_idx] == node) {
- return input_tensors[input_idx];
- }
- }
- MS_LOG(EXCEPTION) << "parameter : " << node->DebugString() << "has no output addr";
- }
- }
- // if proccess reach here,it remarks item_with_index is a real node(Parameter,or executable CNode)
- auto address = AnfAlgo::GetOutputAddr(node, output_index);
- MS_EXCEPTION_IF_NULL(address);
- auto shape = AnfAlgo::GetOutputInferShape(node, output_index);
- TypeId type_id = kNumberTypeFloat32;
- type_id = AnfAlgo::GetOutputInferDataType(node, output_index);
- std::vector<int> temp_shape;
- (void)std::copy(shape.begin(), shape.end(), std::back_inserter(temp_shape));
- tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(type_id, temp_shape);
- // if in paynative mode,data only copyed to host when user want to print data
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- if (ms_context->enable_pynative_infer()) {
- tensor->set_device_address(AnfAlgo::GetMutableOutputAddr(node, output_index));
- } else if (!address->SyncDeviceToHost(trans::GetRuntimePaddingShape(node, output_index),
- LongToSize(tensor->data().nbytes()), tensor->data_type(),
- tensor->data_c(true))) {
- MS_LOG(INFO) << "output sync device to host error!!!";
- tensor->set_dirty(false);
- }
- return tensor;
- }
-
- BaseRef CreatTensorForOutput(const AnfNodePtr &anf, const KernelGraph &graph,
- const std::vector<tensor::TensorPtr> &input_tensors) {
- MS_EXCEPTION_IF_NULL(anf);
- MS_LOG(INFO) << "create tensor for output[" << anf->DebugString() << "]";
- auto item_with_index = AnfAlgo::VisitKernelWithReturnType(anf, 0);
- MS_EXCEPTION_IF_NULL(item_with_index.first);
- // special handle for maketuple
- if (AnfAlgo::CheckPrimitiveType(item_with_index.first, prim::kPrimMakeTuple)) {
- auto cnode = item_with_index.first->cast<CNodePtr>();
- MS_EXCEPTION_IF_NULL(cnode);
- VectorRef ret;
- for (size_t i = 1; i < cnode->inputs().size(); ++i) {
- auto out = CreatTensorForOutput(cnode->input(i), graph, input_tensors);
- ret.push_back(out);
- }
- return ret;
- }
- // if is graph return nothing ,the function should return a null anylist
- size_t size = AnfAlgo::GetOutputTensorNum(item_with_index.first);
- if (size == 0) {
- return VectorRef();
- }
- return CreateOneTensor(item_with_index.first, item_with_index.second, graph, input_tensors);
- }
-
- BaseRef CreatTupleForOutput(const AnfNodePtr &anf, const KernelGraph &graph,
- const std::vector<tensor::TensorPtr> &input_tensors) {
- MS_EXCEPTION_IF_NULL(anf);
- if (!AnfAlgo::IsRealKernel(anf)) {
- MS_LOG(EXCEPTION) << "anf[" << anf->DebugString() << "] should be a executable kernel";
- }
- if (anf->isa<ValueNode>()) {
- return CreateOneTensor(anf, 0, graph, input_tensors);
- }
- VectorRef ret;
- if (anf->isa<CNode>() && AnfAlgo::GetCNodeName(anf) != prim::kPrimMakeTuple->name()) {
- for (size_t i = 0; i < AnfAlgo::GetOutputTensorNum(anf); ++i) {
- auto out = CreateOneTensor(anf, i, graph, input_tensors);
- ret.emplace_back(out);
- }
- }
- return ret;
- }
-
- bool RunOpConvertConstInputToAttr(const py::object &input_object, size_t input_index, const PrimitivePtr &op_prim,
- const std::unordered_set<size_t> &input_attrs) {
- MS_EXCEPTION_IF_NULL(op_prim);
- auto input_names_value = op_prim->GetAttr(kAttrInputNames);
- if (input_names_value == nullptr) {
- return false;
- }
- auto input_names_vec = GetValue<std::vector<std::string>>(input_names_value);
- if (input_index >= input_names_vec.size()) {
- MS_LOG(EXCEPTION) << "The input index: " << input_index << " is large than the input names vector size!";
- }
-
- if (input_attrs.find(input_index) != input_attrs.end()) {
- ValuePtr value = parse::data_converter::PyDataToValue(input_object);
- MS_EXCEPTION_IF_NULL(value);
- auto input_name = input_names_vec[input_index];
- op_prim->set_attr(input_name, value);
- return true;
- }
- return false;
- }
-
- void PlantTensorTupleToVector(const py::tuple &tuple_inputs, const PrimitivePtr &op_prim,
- std::vector<tensor::TensorPtr> *input_tensor) {
- MS_EXCEPTION_IF_NULL(op_prim);
- MS_EXCEPTION_IF_NULL(input_tensor);
- for (const auto &input_object : tuple_inputs) {
- if (!py::isinstance<tensor::Tensor>(input_object)) {
- MS_LOG(EXCEPTION) << "The input object is not a tensor!";
- }
- auto tensor = py::cast<tensor::TensorPtr>(input_object);
- MS_EXCEPTION_IF_NULL(tensor);
- input_tensor->push_back(tensor);
- }
- op_prim->set_attr(kAttrDynInputSizes, MakeValue(std::vector<int>{SizeToInt(tuple_inputs.size())}));
- }
-
- void ConvertValueTupleToTensor(const py::object &input_object, std::vector<tensor::TensorPtr> *input_tensor) {
- MS_EXCEPTION_IF_NULL(input_tensor);
- ValuePtr input_value = parse::data_converter::PyDataToValue(input_object);
- MS_EXCEPTION_IF_NULL(input_value);
- if (!input_value->isa<ValueTuple>()) {
- MS_LOG(EXCEPTION) << "The input object is not a value tuple!";
- }
- auto value_tuple = input_value->cast<ValueTuplePtr>();
- MS_EXCEPTION_IF_NULL(value_tuple);
- tensor::TensorPtr tensor_ptr = nullptr;
- tensor_ptr = opt::CreateTupleTensor(value_tuple);
- MS_EXCEPTION_IF_NULL(tensor_ptr);
- input_tensor->push_back(tensor_ptr);
- }
-
- void ConvertPyObjectToTensor(const py::object &input_object, const PrimitivePtr &op_prim,
- std::vector<tensor::TensorPtr> *input_tensor) {
- MS_EXCEPTION_IF_NULL(op_prim);
- MS_EXCEPTION_IF_NULL(input_tensor);
- tensor::TensorPtr tensor_ptr = nullptr;
- if (py::isinstance<tensor::Tensor>(input_object)) {
- tensor_ptr = py::cast<tensor::TensorPtr>(input_object);
- } else if (py::isinstance<py::float_>(input_object)) {
- tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::float_>(input_object), kFloat32);
- } else if (py::isinstance<py::int_>(input_object)) {
- tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::int_>(input_object), nullptr);
- } else if (py::isinstance<py::list>(input_object)) {
- tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::list>(input_object), nullptr);
- } else if (py::isinstance<py::array>(input_object)) {
- tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::array>(input_object), nullptr);
- } else if (py::isinstance<py::tuple>(input_object)) {
- auto tuple_inputs = py::cast<py::tuple>(input_object);
- if (py::isinstance<tensor::Tensor>(tuple_inputs[0])) {
- PlantTensorTupleToVector(tuple_inputs, op_prim, input_tensor);
- } else {
- ConvertValueTupleToTensor(input_object, input_tensor);
- }
- return;
- } else {
- MS_LOG(EXCEPTION) << "Run op inputs type is invalid!";
- }
- MS_EXCEPTION_IF_NULL(tensor_ptr);
- input_tensor->push_back(tensor_ptr);
- }
-
- void ConvertInputPyobject(const OpRunInfo &op_run_info, const PrimitivePtr &op_prim,
- std::vector<tensor::TensorPtr> *input_tensors, std::vector<bool> *tensors_mask) {
- MS_EXCEPTION_IF_NULL(op_prim);
- MS_EXCEPTION_IF_NULL(input_tensors);
- MS_EXCEPTION_IF_NULL(tensors_mask);
- if (op_run_info.op_inputs.size() != op_run_info.inputs_mask.size()) {
- MS_LOG(EXCEPTION) << "Op input size " << op_run_info.op_inputs.size() << " should be equal to op input mask size "
- << op_run_info.inputs_mask.size();
- }
- opt::ConstInputToAttrInfoRegister reg;
- bool reg_exist = opt::ConstInputToAttrInfoRegistry::Instance().GetRegisterByOpName(op_run_info.op_name, ®);
- size_t input_num = op_run_info.op_inputs.size();
- MS_LOG(INFO) << "py input size: " << input_num;
- for (size_t index = 0; index < input_num; ++index) {
- // convert const input to attr
- if (reg_exist &&
- RunOpConvertConstInputToAttr(op_run_info.op_inputs[index], index, op_prim, reg.GetConstInputAttrInfo())) {
- continue;
- }
- // convert const and tuple input to tensor
- ConvertPyObjectToTensor(op_run_info.op_inputs[index], op_prim, input_tensors);
- // make tensors, weight : 1, data : 0
- std::vector<bool> new_mask(input_tensors->size() - tensors_mask->size(),
- py::cast<bool>(op_run_info.inputs_mask[index]));
- tensors_mask->insert(tensors_mask->end(), new_mask.begin(), new_mask.end());
- }
- }
-
- ValueNodePtr CreateNewValueNode(const AnfNodePtr &anf, KernelGraph *graph) {
- auto value_node = anf->cast<ValueNodePtr>();
- MS_EXCEPTION_IF_NULL(value_node);
- auto value = value_node->value();
- MS_EXCEPTION_IF_NULL(value);
- if (value->isa<None>()) {
- return nullptr;
- }
- auto new_value_node = graph->NewValueNode(value_node);
- graph->FrontBackendlMapAdd(anf, new_value_node);
- graph->AddValueNodeToGraph(new_value_node);
- return new_value_node;
- }
-
- ParameterPtr CreateNewParameterFromParameter(const AnfNodePtr &anf, bool valid_input, KernelGraph *graph) {
- MS_EXCEPTION_IF_NULL(anf);
- if (!anf->isa<Parameter>()) {
- MS_LOG(EXCEPTION) << "anf[" << anf->DebugString() << "] is not a parameter";
- }
- auto graph_inputs = graph->MutableInputs();
- MS_EXCEPTION_IF_NULL(graph_inputs);
- auto valid_inputs = graph->MutableValidInputs();
- MS_EXCEPTION_IF_NULL(valid_inputs);
- ParameterPtr new_parameter = graph->NewParameter(anf->cast<ParameterPtr>());
- graph_inputs->push_back(new_parameter);
- valid_inputs->push_back(valid_input);
- return new_parameter;
- }
-
- std::vector<AnfNodePtr> CreateParameterFromTuple(const AnfNodePtr &node, bool valid_input, KernelGraph *graph) {
- MS_EXCEPTION_IF_NULL(node);
- MS_EXCEPTION_IF_NULL(graph);
- std::vector<AnfNodePtr> parameters;
- std::vector<AnfNodePtr> pre_graph_out = {node};
- // If a cnode is a call, it's input0 is a cnode too, so it doesn't have primitive
- if (!AnfAlgo::IsRealKernel(node)) {
- pre_graph_out = AnfAlgo::GetAllOutput(node, {prim::kPrimTupleGetItem});
- }
- auto valid_inputs = graph->MutableValidInputs();
- MS_EXCEPTION_IF_NULL(valid_inputs);
- auto graph_inputs = graph->MutableInputs();
- MS_EXCEPTION_IF_NULL(graph_inputs);
- auto create_parameter = [&](const AbstractBasePtr &abstract) -> void {
- auto parameter = graph->NewParameter();
- MS_EXCEPTION_IF_NULL(parameter);
- parameter->set_abstract(abstract);
- auto new_parameter = graph->NewParameter(parameter);
- parameters.push_back(new_parameter);
- valid_inputs->push_back(valid_input);
- graph_inputs->push_back(new_parameter);
- };
- for (const auto &out_node : pre_graph_out) {
- MS_EXCEPTION_IF_NULL(out_node);
- auto abstract = out_node->abstract();
- MS_EXCEPTION_IF_NULL(abstract);
- // create multiple parameters if is a tuple output real kernel
- if (abstract->isa<abstract::AbstractTuple>() && !AnfAlgo::CheckPrimitiveType(out_node, prim::kPrimTupleGetItem)) {
- auto tuple_abstract = abstract->cast<abstract::AbstractTuplePtr>();
- MS_EXCEPTION_IF_NULL(tuple_abstract);
- MS_LOG(INFO) << "tuple_size [" << tuple_abstract->size() << "]";
- for (size_t output_idx = 0; output_idx < tuple_abstract->size(); output_idx++) {
- create_parameter((*tuple_abstract)[output_idx]);
- }
- continue;
- }
- // create single parameter if is a abstract real kernel
- create_parameter(out_node->abstract());
- }
- return parameters;
- }
-
- AnfNodePtr CreateNewParameterFromCNode(const AnfNodePtr &anf, bool valid_input, KernelGraph *graph) {
- MS_EXCEPTION_IF_NULL(anf);
- if (!anf->isa<CNode>()) {
- MS_LOG(EXCEPTION) << "Anf[" << anf->DebugString() << "] is not a cnode";
- }
- MS_LOG(INFO) << "Create a new parameter from cnode[" << anf->DebugString() << "]";
- auto parameters = CreateParameterFromTuple(anf, valid_input, graph);
- if (parameters.empty()) {
- MS_LOG(EXCEPTION) << "No parameter exist!!";
- }
- if (parameters.size() == 1) {
- return parameters[0];
- }
- std::vector<AnfNodePtr> make_tuple_input = {NewValueNode(prim::kPrimMakeTuple)};
- (void)std::copy(parameters.begin(), parameters.end(), std::back_inserter(make_tuple_input));
- auto make_tuple = graph->NewCNode(make_tuple_input);
- MS_EXCEPTION_IF_NULL(make_tuple);
- MS_LOG(INFO) << "New make tuple [" << make_tuple->DebugString() << "] of parameters";
- return make_tuple;
- }
-
- bool NeedInsertSwitch() {
- auto context_ptr = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(context_ptr);
- return (context_ptr->enable_task_sink() && context_ptr->loop_sink_flag() &&
- ConfigManager::GetInstance().iter_num() > 1);
- }
-
- size_t LoadCtrlInputTensor(const std::shared_ptr<Context> &context, std::vector<tensor::TensorPtr> *inputs) {
- MS_EXCEPTION_IF_NULL(context);
- if (!NeedInsertSwitch()) {
- (void)context->results_.erase(kInputCtrlTensors);
- return 0;
- }
- MS_LOG(INFO) << "Load kInputCtrlTensors";
- auto inputs_params =
- context->GetResult(kInputCtrlTensors).cast<const std::shared_ptr<std::vector<tensor::TensorPtr>>>();
- MS_EXCEPTION_IF_NULL(inputs_params);
- if (inputs_params->empty()) {
- MS_LOG(EXCEPTION) << "Illegal empty inputs_params";
- }
- auto tensor = (*inputs_params)[0];
- MS_EXCEPTION_IF_NULL(tensor);
- auto *val = static_cast<int32_t *>(tensor->data_c(true));
- MS_EXCEPTION_IF_NULL(val);
- *val = 0;
- tensor->set_dirty(true);
- // set loop_count to zero
- MS_EXCEPTION_IF_NULL(inputs);
- inputs->push_back(tensor);
- return inputs_params->size();
- }
-
- ParameterPtr ConstructRunOpParameter(const std::shared_ptr<KernelGraph> &graph, const tensor::TensorPtr &input_tensor,
- bool is_weight) {
- auto param = graph->NewParameter();
- MS_EXCEPTION_IF_NULL(param);
- if (is_weight) {
- py::object obj;
- param->set_default_param(obj);
- }
- // set the kernel info of parameter
- auto kernel_build_info_builder = std::make_shared<kernel::KernelBuildInfo::KernelBuildInfoBuilder>();
- MS_EXCEPTION_IF_NULL(input_tensor);
- if (input_tensor->device_address().get() == nullptr) {
- kernel_build_info_builder->SetOutputsFormat(std::vector<std::string>{kOpFormat_DEFAULT});
- TypeId param_init_data_type = AnfAlgo::IsParameterWeight(param) ? kTypeUnknown : input_tensor->data_type();
- kernel_build_info_builder->SetOutputsDeviceType(std::vector<TypeId>{param_init_data_type});
- } else {
- kernel_build_info_builder->SetOutputsFormat(std::vector<std::string>{input_tensor->device_address()->format()});
- kernel_build_info_builder->SetOutputsDeviceType(std::vector<TypeId>{input_tensor->device_address()->type_id()});
- }
- AnfAlgo::SetSelectKernelBuildInfo(kernel_build_info_builder->Build(), param.get());
- // ftruct abstract of parameter
- auto abstract = std::make_shared<abstract::AbstractTensor>(input_tensor);
- param->set_abstract(abstract);
- return param;
- }
-
- void DumpGraphOutput(const Any &any, size_t recurse_level = 0) {
- MS_LOG(INFO) << "graph outputs:";
- const size_t max_deep = 10;
- if (recurse_level > max_deep) {
- MS_LOG(INFO) << "recurse too deep";
- return;
- }
- std::string tab_str;
- for (size_t i = 0; i < recurse_level; i++) {
- tab_str = tab_str.append(" ");
- }
- if (any.is<AnyList>()) {
- (void)tab_str.append("{");
- MS_LOG(INFO) << tab_str;
- auto any_list = any.cast<AnyList>();
- for (auto &it : any_list) {
- DumpGraphOutput(it, recurse_level + 1);
- }
- (void)tab_str.append("}");
- MS_LOG(INFO) << tab_str;
- }
- (void)tab_str.append(any.ToString());
- MS_LOG(INFO) << tab_str;
- }
- } // namespace
-
- GraphId SessionBasic::graph_sum_ = 0;
-
- CNodePtr SessionBasic::CreateNewCNode(const CNodePtr &cnode, bool valid_input, KernelGraph *graph,
- bool *from_other_graph,
- std::unordered_map<AnfNodePtr, AnfNodePtr> *other_graph_cnode) {
- MS_EXCEPTION_IF_NULL(cnode);
- MS_EXCEPTION_IF_NULL(graph);
- MS_EXCEPTION_IF_NULL(from_other_graph);
- MS_EXCEPTION_IF_NULL(other_graph_cnode);
- *from_other_graph = false;
- // get primitive of old node
- auto prim = AnfAlgo::GetCNodePrimitive(cnode);
- MS_EXCEPTION_IF_NULL(prim);
- // push attr to inputs[0] of new cnode
- std::vector<AnfNodePtr> cnode_inputs = {std::make_shared<ValueNode>(std::make_shared<Primitive>(*prim))};
- // if has multiple depends,only select first depend as parameter
- for (size_t input_idx = 1; input_idx < cnode->inputs().size(); input_idx++) {
- auto anf = cnode->inputs()[input_idx];
- MS_EXCEPTION_IF_NULL(anf);
- // anf has been created before
- if (graph->GetBackendAnfByFrontAnf(anf) != nullptr) {
- cnode_inputs.emplace_back(graph->GetBackendAnfByFrontAnf(anf));
- continue;
- } else if (other_graph_cnode->find(anf) != other_graph_cnode->end()) {
- cnode_inputs.push_back((*other_graph_cnode)[anf]);
- continue;
- } else if (anf->isa<ValueNode>() && !IsValueNode<FuncGraph>(anf)) {
- // if input is a value node,
- auto new_value_node = CreateNewValueNode(anf, graph);
- if (new_value_node != nullptr) {
- cnode_inputs.emplace_back(new_value_node);
- }
- continue;
- } else if (anf->isa<Parameter>()) {
- // if anf is a parameter
- auto new_parameter = CreateNewParameterFromParameter(anf, valid_input, graph);
- cnode_inputs.push_back(new_parameter);
- if (GetGraphIdByNode(anf) == kInvalidGraphId) {
- graph->FrontBackendlMapAdd(anf, new_parameter);
- } else {
- (*other_graph_cnode)[anf] = new_parameter;
- }
- continue;
- } else if (anf->isa<CNode>()) {
- *from_other_graph = true;
- // the input node is a cnode from other graph
- auto parameter_from_cnode = CreateNewParameterFromCNode(anf, valid_input, graph);
- cnode_inputs.push_back(parameter_from_cnode);
- (*other_graph_cnode)[anf] = parameter_from_cnode;
- continue;
- }
- MS_LOG(EXCEPTION) << "Unexpected input[" << anf->DebugString() << "]";
- }
- TraceManager::DebugTrace(std::make_shared<TraceCopy>(cnode->debug_info()));
- auto new_cnode = graph->NewCNode(cnode_inputs);
- TraceManager::EndTrace();
- return new_cnode;
- }
-
- KernelGraphPtr SessionBasic::ConstructKernelGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) {
- std::unordered_map<AnfNodePtr, AnfNodePtr> other_graph_cnode;
- auto graph = std::make_shared<KernelGraph>();
- graph->set_graph_id(graph_sum_);
- MS_LOG(INFO) << "Create graph: " << graph_sum_;
- size_t from_other_graph_depend_num = 0;
- for (const auto &node : lst) {
- MS_EXCEPTION_IF_NULL(node);
- MS_LOG(DEBUG) << "Start create new cnode, node = " << node->DebugString();
- if (!node->isa<CNode>()) {
- MS_LOG(EXCEPTION) << "Node " << node->DebugString() << " is not CNode";
- }
- auto cnode = node->cast<CNodePtr>();
- MS_EXCEPTION_IF_NULL(cnode);
- // create a new cnode object
- bool from_other_graph = false;
- // only first depend from other graph can create
- bool valid_input = true;
- if (from_other_graph_depend_num != 0 && AnfAlgo::CheckPrimitiveType(node, prim::kPrimDepend)) {
- valid_input = false;
- }
- auto new_cnode = CreateNewCNode(cnode, valid_input, graph.get(), &from_other_graph, &other_graph_cnode);
- if (AnfAlgo::CheckPrimitiveType(node, prim::kPrimDepend) && from_other_graph) {
- from_other_graph_depend_num++;
- }
- MS_EXCEPTION_IF_NULL(new_cnode);
- new_cnode->set_abstract(cnode->abstract());
- new_cnode->set_scope(cnode->scope());
- // record map relations between anf from ME and new anf node used in backend
- graph->FrontBackendlMapAdd(node, new_cnode);
- }
- // add a make_tuple at the end of graph as output
- graph->set_output(ConstructOutput(outputs, graph));
- MS_EXCEPTION_IF_NULL(context_);
- FuncGraphManagerPtr manager = context_->manager();
- if (manager) {
- manager->AddFuncGraph(graph);
- graph->set_manager(manager);
- }
- graph->SetExecOrderByDefault();
- opt::BackendCommonOptimization(graph);
- graphs_[graph_sum_++] = graph;
- return graph;
- }
-
- // run graph steps
- void SessionBasic::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
- const std::vector<tensor::TensorPtr> &inputs_const) const {
- MS_EXCEPTION_IF_NULL(kernel_graph);
- std::vector<tensor::TensorPtr> inputs(inputs_const);
- size_t input_ctrl_size = 1;
- MS_EXCEPTION_IF_NULL(context_);
- if (context_->HasResult(kInputCtrlTensors)) {
- input_ctrl_size = LoadCtrlInputTensor(context_, &inputs);
- }
- MS_EXCEPTION_IF_NULL(kernel_graph);
- auto input_nodes = kernel_graph->inputs();
- if ((inputs.size() + input_ctrl_size) - 1 != input_nodes.size()) {
- MS_LOG(EXCEPTION) << "tensor input size:" << inputs.size()
- << " is not equal graph inputs size:" << input_nodes.size()
- << ", input_ctrl_size:" << input_ctrl_size;
- }
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- for (size_t i = 0; i < inputs.size(); ++i) {
- auto tensor = inputs[i];
- MS_EXCEPTION_IF_NULL(tensor);
- auto input_node = input_nodes[i];
- MS_EXCEPTION_IF_NULL(input_node);
- if (input_node->isa<Parameter>() && AnfAlgo::OutputAddrExist(input_node, 0)) {
- auto pk_node = input_node->cast<ParameterPtr>();
- auto device_address = AnfAlgo::GetMutableOutputAddr(pk_node, 0);
- bool need_sync = false;
- if (ms_context->enable_pynative_infer()) {
- if (tensor->device_address().get() == nullptr || tensor->device_address() != device_address) {
- need_sync = true;
- }
- } else {
- if (tensor->is_dirty() || !AnfAlgo::IsParameterWeight(pk_node)) {
- need_sync = true;
- } else if (tensor->device_address() != device_address) {
- (void)tensor->data_sync();
- need_sync = true;
- }
- }
- if (need_sync) {
- tensor->set_device_address(device_address);
- MS_EXCEPTION_IF_NULL(device_address);
- if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
- LongToSize(tensor->data().nbytes()), tensor->data_type(),
- tensor->data_c(false))) {
- MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
- }
- }
- }
- tensor->set_dirty(false);
- }
- }
-
- void SessionBasic::UpdateOutputs(const std::shared_ptr<KernelGraph> &kernel_graph, VectorRef *const outputs,
- const std::vector<tensor::TensorPtr> &input_tensors) const {
- MS_EXCEPTION_IF_NULL(kernel_graph);
- MS_EXCEPTION_IF_NULL(outputs);
- auto anf_outputs = kernel_graph->outputs();
- for (auto &item : anf_outputs) {
- MS_LOG(INFO) << "update output[" << item->DebugString() << "]";
- MS_EXCEPTION_IF_NULL(item);
- if (AnfAlgo::IsTupleOutput(item) && AnfAlgo::IsRealKernel(item)) {
- outputs->emplace_back(CreatTupleForOutput(item, *kernel_graph, input_tensors));
- continue;
- }
- outputs->emplace_back(CreatTensorForOutput(item, *kernel_graph, input_tensors));
- }
- }
-
- void SessionBasic::RegisterSummaryCallBackFunc(const CallBackFunc &callback) {
- MS_EXCEPTION_IF_NULL(callback);
- summary_callback_ = callback;
- }
-
- void SessionBasic::Reorder(std::vector<CNodePtr> *node_list) {
- MS_EXCEPTION_IF_NULL(node_list);
- std::vector<CNodePtr> all_opt_list;
- std::vector<CNodePtr> non_opt_list;
-
- for (const auto &node : *node_list) {
- MS_EXCEPTION_IF_NULL(node);
- if (kOptOperatorSet.find(AnfAlgo::GetCNodeName(node)) != kOptOperatorSet.end()) {
- all_opt_list.emplace_back(node);
- } else {
- non_opt_list.emplace_back(node);
- }
- }
- node_list->clear();
- (void)std::copy(non_opt_list.begin(), non_opt_list.end(), std::back_inserter(*node_list));
- (void)std::copy(all_opt_list.begin(), all_opt_list.end(), std::back_inserter(*node_list));
- }
-
- void SessionBasic::Summary(KernelGraph *graph) {
- if (summary_callback_ == nullptr) {
- return;
- }
- MS_EXCEPTION_IF_NULL(graph);
- bool exist_summary = ExistSummaryNode(graph);
- if (!exist_summary) {
- return;
- }
- std::unordered_map<std::string, std::pair<AnfNodePtr, int>> summary_outputs;
- GetSummaryNodes(graph, &summary_outputs);
- std::map<std::string, tensor::TensorPtr> params_list;
- // fetch outputs apply kernel in session & run callback functions
- for (auto &output_item : summary_outputs) {
- auto node = output_item.second.first;
- size_t index = IntToSize(output_item.second.second);
- auto address = AnfAlgo::GetOutputAddr(node, index);
- auto shape = AnfAlgo::GetOutputInferShape(node, index);
- TypeId type_id = AnfAlgo::GetOutputInferDataType(node, index);
- std::vector<int> temp_shape;
- (void)std::copy(shape.begin(), shape.end(), std::back_inserter(temp_shape));
- tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(type_id, temp_shape);
- MS_EXCEPTION_IF_NULL(address);
- if (!address->SyncDeviceToHost(trans::GetRuntimePaddingShape(node, index), LongToSize(tensor->data().nbytes()),
- tensor->data_type(), tensor->data_c(true))) {
- MS_LOG(ERROR) << "Failed to sync output from device to host.";
- }
- tensor->set_dirty(false);
- params_list[output_item.first] = tensor;
- }
- // call callback function here
- summary_callback_(0, params_list);
- }
-
- CNodePtr SessionBasic::ConstructOutput(const AnfNodePtrList &outputs, const std::shared_ptr<KernelGraph> &graph) {
- MS_EXCEPTION_IF_NULL(graph);
- std::vector<AnfNodePtr> output_args;
- auto FindEqu = [graph, outputs](const AnfNodePtr &out) -> AnfNodePtr {
- auto backend_anf = graph->GetBackendAnfByFrontAnf(out);
- if (backend_anf != nullptr) {
- return backend_anf;
- }
- for (const auto &output : outputs) {
- MS_LOG(INFO) << "output:" << output->DebugString();
- }
- MS_LOG(EXCEPTION) << "Can't find the node in the equiv map!";
- };
- output_args.push_back(NewValueNode(prim::kPrimMakeTuple));
- (void)std::transform(outputs.begin(), outputs.end(), std::back_inserter(output_args),
- [&](const AnfNodePtr &out) -> AnfNodePtr { return FindEqu(out); });
- return graph->NewCNode(output_args);
- }
-
- void SessionBasic::CreateOutputNode(const CNodePtr &cnode, const std::shared_ptr<KernelGraph> &graph) {
- MS_LOG(INFO) << "Start!";
- std::vector<AnfNodePtr> make_tuple_inputs;
- make_tuple_inputs.push_back(NewValueNode(prim::kPrimMakeTuple));
- if (AnfRuntimeAlgorithm::GetOutputTensorNum(cnode) > 1) {
- for (size_t output_index = 0; output_index < AnfRuntimeAlgorithm::GetOutputTensorNum(cnode); output_index++) {
- auto idx = NewValueNode(SizeToInt(output_index));
- MS_EXCEPTION_IF_NULL(idx);
- auto imm = std::make_shared<Int32Imm>(output_index);
- idx->set_abstract(std::make_shared<abstract::AbstractScalar>(imm));
- MS_EXCEPTION_IF_NULL(graph);
- auto getitem = graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), cnode, idx});
- std::vector<TypeId> types = {AnfAlgo::GetOutputInferDataType(cnode, output_index)};
- std::vector<std::vector<size_t>> shapes = {AnfAlgo::GetOutputInferShape(cnode, output_index)};
- AnfAlgo::SetOutputInferTypeAndShape(types, shapes, getitem.get());
- make_tuple_inputs.push_back(getitem);
- }
- } else {
- make_tuple_inputs.push_back(cnode);
- }
- // create output
- auto g_output = graph->NewCNode(make_tuple_inputs);
- graph->set_output(g_output);
- // set graph manager,which now is only used to get valuenodes and hardware optimizing
- MS_EXCEPTION_IF_NULL(context_);
- FuncGraphManagerPtr manager = context_->manager();
- if (manager != nullptr) {
- manager->AddFuncGraph(graph);
- graph->set_manager(manager);
- }
- MS_LOG(INFO) << "Finish!";
- }
-
- std::shared_ptr<KernelGraph> SessionBasic::ConstructSingleOpGraph(const OpRunInfo &op_run_info,
- std::vector<tensor::TensorPtr> *input_tensors) {
- MS_EXCEPTION_IF_NULL(input_tensors);
- auto graph = std::make_shared<KernelGraph>();
- std::vector<AnfNodePtr> inputs;
- // set input[0]
- PrimitivePtr op_prim = op_run_info.py_primitive;
- if (op_prim == nullptr) {
- op_prim = std::make_shared<Primitive>(op_run_info.op_name);
- }
- inputs.push_back(std::make_shared<ValueNode>(op_prim));
- // set input parameter
- std::vector<bool> tensors_mask;
- ConvertInputPyobject(op_run_info, op_prim, input_tensors, &tensors_mask);
- MS_LOG(INFO) << "Input tensor size: " << input_tensors->size();
- if (input_tensors->size() != tensors_mask.size()) {
- MS_LOG(EXCEPTION) << "Input tensors size " << input_tensors->size() << " should be equal to tensors mask size "
- << tensors_mask.size();
- }
- for (size_t i = 0; i < input_tensors->size(); ++i) {
- auto parameter = ConstructRunOpParameter(graph, input_tensors->at(i), tensors_mask[i]);
- inputs.push_back(parameter);
- graph->MutableInputs()->push_back(parameter);
- }
- // set execution order
- auto cnode = graph->NewCNode(inputs);
- MS_EXCEPTION_IF_NULL(cnode);
- // set abstract,which include inferred shapes and types
- cnode->set_abstract(op_run_info.abstract);
- // set execution order
- std::vector<CNodePtr> exe_order = {cnode};
- graph->set_execution_order(exe_order);
- // set output
- CreateOutputNode(cnode, graph);
- return graph;
- }
-
- BaseRef SessionBasic::TransformBaseRefListToTuple(const BaseRef &base_ref) {
- if (utils::isa<VectorRef>(base_ref)) {
- auto ref_list = utils::cast<VectorRef>(base_ref);
- py::tuple output_tensors(ref_list.size());
- for (size_t i = 0; i < ref_list.size(); ++i) {
- auto output = TransformBaseRefListToTuple(ref_list[i]); // use pyObjectRef
- if (utils::isa<tensor::TensorPtr>(output)) {
- auto tensor_ptr = utils::cast<tensor::TensorPtr>(output);
- MS_EXCEPTION_IF_NULL(tensor_ptr);
- output_tensors[i] = tensor_ptr;
- } else if (utils::isa<PyObjectRef>(output)) {
- py::object obj = utils::cast<PyObjectRef>(output).object_;
- py::tuple tensor_tuple = py::cast<py::tuple>(obj);
- output_tensors[i] = tensor_tuple;
- } else {
- MS_LOG(EXCEPTION) << "The output is not a base ref list or a tensor!";
- }
- }
- return output_tensors; // turn tuple to py::object and store in PyObjectRef
- } else if (utils::isa<tensor::TensorPtr>(base_ref)) {
- return base_ref;
- } else {
- MS_LOG(EXCEPTION) << "The output is not a base ref list or a tensor!";
- }
- }
- } // namespace session
- } // namespace mindspore
|