|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Dataset help for minddata dataset"""
- import math
- import os
-
- from mindspore._checkparam import Validator
- from mindspore.common.dtype import pytype_to_dtype
- from .. import context, nn
- from ._utils import _exec_datagraph, _get_types_and_shapes, _construct_tensor_list
- from ..nn.wrap import GetNextSingleOp
- from ..parallel._utils import _get_device_num, _get_global_rank, _need_to_full, _to_full_shapes
- from ..ops import operations as P
-
-
- def _send_data(dataset, epoch_num):
- """Engine dataset to write data to tdt queue."""
- if not hasattr(dataset, '__has_sent__'):
- exec_dataset = dataset.__transfer_dataset__
- exec_dataset.send(epoch_num)
- dataset.__has_sent__ = True
-
-
- def _send_data_no_flag(dataset, epoch_num):
- """Engine dataset to write data to tdt queue directly."""
- exec_dataset = dataset.__transfer_dataset__
- exec_dataset.send(epoch_num)
-
-
- def _dynamic_sink_scenario(dataset, dataset_iter):
- """Special scenario with dynamic shape and sink_size=1."""
- flag = False
- ms_role = os.getenv("MS_ROLE")
- if hasattr(dataset_iter, "sink_size") and \
- dataset_iter.sink_size == 1 and \
- dataset.get_dataset_size() != 1 and \
- hasattr(dataset_iter, "sink_count") and \
- dataset_iter.sink_count == 1 and \
- context.get_context("device_target") == "Ascend" and \
- context.get_context("mode") == context.GRAPH_MODE and \
- ms_role != "MS_WORKER":
- flag = True
- return flag
-
-
- class _DataWrapper(nn.Cell):
- """
- Wraps the input network with a dataset which automatically fetches data with 'GetNext' function from the
- dataset channel 'queue_name' and performs the forward computation.
- """
-
- def __init__(self, network, dataset_types, dataset_shapes, queue_name):
- super(_DataWrapper, self).__init__(auto_prefix=False, flags=network.get_flags())
- # Also copy the flag in `network` construct
- flags = getattr(network.__class__.construct, "_mindspore_flags", {})
- self.info = (dataset_types, dataset_shapes)
- self.add_flags(**flags)
- self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name)
- self.network = network
-
- def construct(self):
- outputs = self.get_next()
- return self.network(*outputs)
-
-
- def _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name):
- if not isinstance(network, _DataWrapper):
- network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name)
- return network
-
-
- def connect_network_with_dataset(network, dataset_helper):
- """
- Connect the `network` with dataset in `dataset_helper`.
-
- This function wraps the input network with 'GetNext' so that the data can be fetched automatically from the
- data channel corresponding to the 'queue_name' and passed to the input network during forward computation.
-
- Note:
- In the case of running the network on Ascend/GPU in graph mode, this function will wrap the input network with
- 'GetNext', in other cases, the input network will be returned with no change.
- The 'GetNext' is required to get data only in sink mode, so this function is not applicable to no-sink mode.
-
- Args:
- network (Cell): The training network for dataset.
- dataset_helper (DatasetHelper): A class to process the MindData dataset, it provides the type, shape and queue
- name of the dataset to wrap the `GetNext`.
-
- Returns:
- Cell, a new network wrapped with 'GetNext' in the case of running the task on Ascend in graph mode, otherwise
- it is the input network.
-
- Supported Platforms:
- ``Ascend`` ``GPU``
-
- Examples:
- >>> from mindspore import DatasetHelper
- >>>
- >>> # call create_dataset function to create a regular dataset, refer to mindspore.dataset
- >>> train_dataset = create_custom_dataset()
- >>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=True)
- >>> net = Net()
- >>> net_with_get_next = connect_network_with_dataset(net, dataset_helper)
- """
-
- dataset_iter = dataset_helper.iter
- dataset = dataset_iter.dataset
-
- if isinstance(dataset_iter, _DatasetIterNormal):
- raise RuntimeError("Dataset should be connected with network only in sink mode.")
-
- ms_role = os.getenv("MS_ROLE")
- if ms_role in ("MS_PSERVER", "MS_SCHED"):
- return network
-
- queue_name = dataset.__transfer_dataset__.queue_name
- if _dynamic_sink_scenario(dataset, dataset_iter):
- if not hasattr(dataset_iter, '__network__'):
- dataset_iter.__network__ = network
- network = dataset_iter.__network__
-
- dataset_types, dataset_shapes = dataset_helper.get_data_info()
- dataset_types = [pytype_to_dtype(x) for x in dataset_types]
-
- key = str(dataset_types) + str(dataset_shapes)
- if hasattr(dataset_iter, '__network_manage__') and key in dataset_iter.__network_manage__:
- network = dataset_iter.__network_manage__[key]
- else:
- if _need_to_full():
- device_num = _get_device_num()
- dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
-
- network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name)
- dataset_iter.__network_manage__ = dataset_iter.__network_manage__ if hasattr(
- dataset_iter, '__network_manage__') else dict()
- dataset_iter.__network_manage__[key] = network
- return network
-
- if not hasattr(dataset, '__me_inited__') and \
- not context.get_context("enable_ge") and \
- context.get_context("device_target") in ("Ascend", "GPU"):
- dataset.__me_inited__ = True
- dataset_types, dataset_shapes = dataset_helper.types_shapes()
- network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name)
- return network
-
-
- class DatasetHelper:
- """
- DatasetHelper is a class to process the MindData dataset and it provides the information of dataset.
-
- According to different contexts, change the iterations of dataset and use the same iteration for loop in different
- contexts.
-
- Note:
- The iteration of DatasetHelper will provide one epoch data.
-
- Args:
- dataset (Dataset): The training dataset iterator.
- dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data
- from host. Default: True.
- sink_size (int): Control the amount of data in each sink.
- If sink_size=-1, sink the complete dataset for each epoch.
- If sink_size>0, sink sink_size data for each epoch.
- Default: -1.
- epoch_num (int): Control the number of epoch data to send. Default: 1.
-
- Examples:
- >>> from mindspore import DatasetHelper
- >>>
- >>> train_dataset = create_custom_dataset()
- >>> set_helper = DatasetHelper(train_dataset, dataset_sink_mode=False)
- >>> for next_element in set_helper:
- ... print(next_element)
- """
-
- def __init__(self, dataset, dataset_sink_mode=True, sink_size=-1, epoch_num=1):
- dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
- Validator.check_is_int(sink_size)
- if sink_size < -1 or sink_size == 0:
- raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size))
- if sink_size == -1:
- sink_size = dataset.get_dataset_size()
-
- if dataset_sink_mode:
- if context.get_context("enable_ge"):
- iterclass = _DatasetIterGE
- else:
- if context.get_context("mode") == context.GRAPH_MODE:
- ms_role = os.getenv("MS_ROLE")
- if ms_role in ("MS_PSERVER", "MS_SCHED"):
- iterclass = _DatasetIterPSServer
- elif ms_role == "MS_WORKER":
- iterclass = _DatasetIterPSWork
- elif (context.get_context("device_target") == "Ascend") or \
- (context.get_context("device_target") == "GPU"):
- iterclass = _DatasetIterMSLoopSink
- elif context.get_context("device_target") == "CPU":
- raise RuntimeError(
- "Currently dataset sink mode is not supported when the device target is CPU.")
- else:
- iterclass = _DatasetIterPyNative
- self.iter = iterclass(dataset, sink_size, epoch_num)
- else:
- iterclass = _DatasetIterNormal
- self.iter = iterclass(dataset, epoch_num=epoch_num)
-
- def __iter__(self):
- return self.iter.__iter__()
-
- # A temp solution for loop sink. Delete later
- def types_shapes(self):
- """Get the types and shapes from dataset on the current configuration."""
- return self.iter.types_shapes()
-
- def sink_size(self):
- """Get sink_size for each iteration."""
- return self.iter.get_sink_size()
-
- def stop_send(self):
- """stop send data about data sink."""
- self.iter.stop_send()
-
- def release(self):
- """Free up resources about data sink."""
- self.iter.release()
-
- def continue_send(self):
- """continue send data to device at the beginning of epoch."""
- self.iter.continue_send()
-
- def get_data_info(self):
- return self.iter.get_data_info()
-
-
- class _DatasetIter:
- """Base iter for dataset helper"""
-
- def __init__(self, dataset, sink_size, epoch_num):
- self.dataset = dataset
- self.sink_size = sink_size
- self.sink_count = self.get_sink_count(dataset)
-
- if not hasattr(dataset, '__transfer_dataset__'):
- if hasattr(dataset, '__loop_size__'):
- ms_role = os.getenv("MS_ROLE")
- # PS mode does not support loop sink and need get the real sink size.
- if ms_role != "MS_WORKER":
- self.sink_size = dataset.__loop_size__
- create_data_info_queue = (sink_size == 1 and self.sink_count == 1 and context.get_context(
- "device_target") == "Ascend")
- dataset.__transfer_dataset__ = _exec_datagraph(dataset, self.sink_size,
- create_data_info_queue=create_data_info_queue)
-
- if not hasattr(dataset, '__no_send__'):
- _send_data(dataset, epoch_num)
- else:
- _send_data_no_flag(dataset, epoch_num)
-
- self.stop_send = dataset.__transfer_dataset__.stop_send
- self.release = dataset.__transfer_dataset__.release
- self.continue_send = dataset.__transfer_dataset__.continue_send
- self.get_data_info = dataset.__transfer_dataset__.get_data_info
- self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset)
-
- def __iter__(self):
- self.index = 0
- return self
-
- def __next__(self):
- if self.index >= self.sink_count:
- raise StopIteration()
- self.index += 1
- return self.op()
-
- def types_shapes(self):
- return self.dataset_types, self.dataset_shapes
-
- def get_sink_count(self, dataset):
- sink_count = 1
- if hasattr(dataset, '__loop_size__'):
- loop_size = dataset.__loop_size__
- if loop_size <= dataset.get_dataset_size() and dataset.get_dataset_size() % loop_size != 0:
- raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
- f'sink_size {loop_size} are not matched.')
- sink_count = math.ceil(dataset.get_dataset_size() / loop_size)
- return sink_count
-
- def get_sink_size(self):
- """get sink_size to device"""
- sink_size = 1
- ms_role = os.getenv("MS_ROLE")
- if hasattr(self.dataset, '__loop_size__'):
- sink_size = self.dataset.__loop_size__
- elif ms_role == "MS_WORKER":
- # PS mode does not support loop sink.
- sink_size = 1
- else:
- if context.get_context("enable_ge") or context.get_context("device_target") == "Ascend" \
- or context.get_context("device_target") == "GPU":
- if self.sink_size > 0:
- sink_size = self.sink_size
- else:
- sink_size = self.dataset.get_dataset_size()
- return sink_size
-
-
- class _DatasetIterGE(_DatasetIter):
- """Iter for GE."""
-
- def __init__(self, dataset, sink_size, epoch_num):
- super().__init__(dataset, sink_size, epoch_num)
- self.sink_count = self.get_sink_count(dataset)
- batch_expand_num = 1
- if _need_to_full():
- batch_expand_num = _get_device_num()
- tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num)
-
- def op():
- return tensor_list_run
-
- self.op = op
-
-
- class _DatasetIterPyNative(_DatasetIter):
- """Iter for MS(enable_loop_sink=False)."""
-
- def __init__(self, dataset, sink_size, epoch_num):
- super().__init__(dataset, sink_size, epoch_num)
- if sink_size > 0:
- self.sink_count = sink_size
- else:
- self.sink_count = dataset.get_dataset_size()
-
- def op():
- return tuple()
-
- self.op = op
-
-
- class _DatasetIterMSLoopSink(_DatasetIter):
- """Iter for context (device_target=Ascend)"""
-
- def __init__(self, dataset, sink_size, epoch_num):
- super().__init__(dataset, sink_size, epoch_num)
- self.sink_count = self.get_sink_count(dataset)
- # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, and not using full_batch,
- # use a complete tensor to compile, and slice tensor to run. The batch dimension of tensors for
- # compile is device_number times the batch dimension of tensors for run. Now only support LoopSink.
- if _need_to_full():
- device_num = _get_device_num()
- self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
-
- def op():
- return tuple()
-
- self.op = op
-
-
- class _DatasetIterMS(_DatasetIter):
- """Iter for MS(enable_loop_sink=False)."""
-
- def __init__(self, dataset, sink_size, epoch_num):
- super().__init__(dataset, sink_size, epoch_num)
- if sink_size > 0:
- self.sink_count = sink_size
- else:
- self.sink_count = dataset.get_dataset_size()
-
- queue_name = dataset.__transfer_dataset__.queue_name
- self.op = GetNextSingleOp(self.dataset_types, self.dataset_shapes, queue_name)
-
-
- class _DatasetIterPSServer(_DatasetIter):
- """Iter for context on MS_PSERVER or MS_SCHED"""
-
- def __init__(self, dataset, sink_size, epoch_num):
- super().__init__(dataset, sink_size, epoch_num)
- self.sink_count = 1
- self.sink_size = 1
- self.op = None
-
- def op():
- return _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num=1)
-
- self.op = op
-
-
- class _DatasetIterPSWork(_DatasetIter):
- """Iter for context on MS_WORKER"""
-
- def __init__(self, dataset, sink_size, epoch_num):
- super().__init__(dataset, sink_size, epoch_num)
- if sink_size > 0:
- self.sink_count = sink_size
- else:
- self.sink_count = dataset.get_dataset_size()
-
- def op():
- return tuple()
-
- self.op = op
-
-
- class _DatasetIterNormal:
- """Iter for normal(non sink) mode, feed the data from host."""
-
- def __init__(self, dataset, epoch_num=-1):
- self.dataset = dataset
- self.device_num = _get_device_num()
- self.global_rank = _get_global_rank()
- self.iter = self.dataset.create_tuple_iterator(num_epochs=epoch_num, do_copy=True)
-
- def __iter__(self):
- return self
-
- def __next__(self):
- data = self.iter.__next__()
- return data
-
-
- __all__ = ["DatasetHelper", "connect_network_with_dataset"]
|