|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import pytest
- from mindspore.ops import composite as C
- import mindspore.common.dtype as mstype
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
-
- class Net(nn.Cell):
- def construct(self, x, y):
- while x < y:
- x = x * x + 1
- return x
-
-
- class GradNet(nn.Cell):
- def __init__(self, net):
- super().__init__()
- self.net = net
- self.grad_op = C.GradOperation(get_all=True)
-
- def construct(self, x, y):
- gradient_function = self.grad_op(self.net)
- return gradient_function(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_while_grad():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
- x = Tensor([2.0], dtype=mstype.float32)
- y = Tensor([2.0], dtype=mstype.float32)
- GradNet(Net())(x, y)
|