|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- import mindspore.common.dtype as mstype
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Net(nn.Cell):
- def __init__(self, axis=0):
- super(Net, self).__init__()
- self.unique = P.Unique()
- self.reshape = P.Reshape()
- self.concat = P.Concat(axis=axis)
-
- def construct(self, x1, x2):
- out1_unique, _ = self.unique(x1)
- out2_unique, _ = self.unique(x2)
- out1_shape = self.reshape(out1_unique, (1, -1, 2))
- out2_shape = self.reshape(out2_unique, (1, -1, 2))
- return self.concat((out1_shape, out2_shape))
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_dynamic_concat():
- x1 = Tensor(np.array([1, 2, 3, 1, 4, 2]), mstype.int32)
- x2 = Tensor(np.array([1, 2, 3, 4, 5, 6]), mstype.int32)
- net = Net(axis=1)
- output = net(x1, x2)
- expect = np.array([[[1, 2], [3, 4], [1, 2], [3, 4], [5, 6]]])
- assert (output.asnumpy() == expect).all()
|