|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "utils/tensorprint_utils.h"
- #include <atomic>
- #include <fstream>
- #include <memory>
- #include <string>
- #include <vector>
- #include "ir/tensor.h"
- #include "pybind11/pybind11.h"
- #include "utils/ms_utils.h"
- #include "utils/shape_utils.h"
- #ifndef NO_DLIB
- #include "tdt/tsd_client.h"
- #include "tdt/tdt_host_interface.h"
- #include "tdt/data_common.h"
- #endif
-
- namespace py = pybind11;
- namespace mindspore {
- const char kShapeSeperator[] = ",";
- const char kShapeScalar[] = "[0]";
- const char kShapeNone[] = "[]";
- static std::map<std::string, TypeId> print_type_map = {
- {"int8_t", TypeId::kNumberTypeInt8}, {"uint8_t", TypeId::kNumberTypeUInt8},
- {"int16_t", TypeId::kNumberTypeInt16}, {"uint16_t", TypeId::kNumberTypeUInt16},
- {"int32_t", TypeId::kNumberTypeInt32}, {"uint32_t", TypeId::kNumberTypeUInt32},
- {"int64_t", TypeId::kNumberTypeInt64}, {"uint64_t", TypeId::kNumberTypeUInt64},
- {"float16", TypeId::kNumberTypeFloat16}, {"float", TypeId::kNumberTypeFloat32},
- {"double", TypeId::kNumberTypeFloat64}, {"bool", TypeId::kNumberTypeBool}};
-
- static std::map<std::string, size_t> type_size_map = {
- {"int8_t", sizeof(int8_t)}, {"uint8_t", sizeof(uint8_t)}, {"int16_t", sizeof(int16_t)},
- {"uint16_t", sizeof(uint16_t)}, {"int32_t", sizeof(int32_t)}, {"uint32_t", sizeof(uint32_t)},
- {"int64_t", sizeof(int64_t)}, {"uint64_t", sizeof(uint64_t)}, {"float16", sizeof(float) / 2},
- {"float", sizeof(float)}, {"double", sizeof(double)}, {"bool", sizeof(bool)}};
-
- std::string GetParseType(const std::string &tensorType_) {
- static const std::map<std::string, std::string> print_parse_map = {
- {"int8_t", "Int8"}, {"uint8_t", "Uint8"}, {"int16_t", "Int16"}, {"uint16_t", "Uint16"},
- {"int32_t", "Int32"}, {"uint32_t", "Uint32"}, {"int64_t", "Int64"}, {"uint64_t", "Uint64"},
- {"float16", "Float16"}, {"float", "Float32"}, {"double", "Float64"}, {"bool", "Bool"}};
- auto type_iter = print_parse_map.find(tensorType_);
- if (type_iter == print_parse_map.end()) {
- MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << tensorType_;
- }
- return type_iter->second;
- }
-
- bool ParseTensorShape(const std::string &input_shape_str, ShapeVector *const tensor_shape, size_t *dims) {
- if (tensor_shape == nullptr) {
- return false;
- }
- MS_EXCEPTION_IF_NULL(dims);
- std::string shape_str = input_shape_str;
- if (shape_str.size() <= 2) {
- return false;
- }
- (void)shape_str.erase(shape_str.begin());
- shape_str.pop_back();
- shape_str += kShapeSeperator;
- string::size_type pos_begin = 0;
- string::size_type pos_end = shape_str.find(kShapeSeperator);
- while (pos_end != std::string::npos) {
- string dim_str = shape_str.substr(pos_begin, pos_end - pos_begin);
- tensor_shape->emplace_back(std::stoi(dim_str));
- (*dims) = (*dims) * std::stoul(dim_str);
- pos_begin = pos_end + sizeof(kShapeSeperator) - 1;
- pos_end = shape_str.find(kShapeSeperator, pos_begin);
- }
- return true;
- }
-
- bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *const print_tensor,
- const size_t &memory_size) {
- MS_EXCEPTION_IF_NULL(str_data_ptr);
- MS_EXCEPTION_IF_NULL(print_tensor);
- auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c());
- MS_EXCEPTION_IF_NULL(tensor_data_ptr);
- auto cp_ret =
- memcpy_s(tensor_data_ptr, static_cast<size_t>(print_tensor->data().nbytes()), str_data_ptr, memory_size);
- if (cp_ret != EOK) {
- MS_LOG(ERROR) << "Print op Failed to copy the memory to py::tensor " << cp_ret;
- return false;
- }
- return true;
- }
-
- template <typename T>
- void PrintScalarToString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) {
- MS_EXCEPTION_IF_NULL(str_data_ptr);
- MS_EXCEPTION_IF_NULL(buf);
- *buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value=";
- const T *data_ptr = reinterpret_cast<const T *>(str_data_ptr);
- if constexpr (std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value) {
- const int int_data = static_cast<int>(*data_ptr);
- *buf << int_data << ")\n";
- } else {
- *buf << *data_ptr << ")\n";
- }
- }
-
- void PrintScalarToBoolString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) {
- MS_EXCEPTION_IF_NULL(str_data_ptr);
- MS_EXCEPTION_IF_NULL(buf);
- const bool *data_ptr = reinterpret_cast<const bool *>(str_data_ptr);
- *buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value=";
- if (*data_ptr) {
- *buf << "True)\n";
- } else {
- *buf << "False)\n";
- }
- }
-
- void convertDataItem2Scalar(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) {
- MS_EXCEPTION_IF_NULL(str_data_ptr);
- MS_EXCEPTION_IF_NULL(buf);
- auto type_iter = print_type_map.find(tensor_type);
- auto type_id = type_iter->second;
- if (type_id == TypeId::kNumberTypeBool) {
- PrintScalarToBoolString(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeInt8) {
- PrintScalarToString<int8_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeUInt8) {
- PrintScalarToString<uint8_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeInt16) {
- PrintScalarToString<int16_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeUInt16) {
- PrintScalarToString<uint16_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeInt32) {
- PrintScalarToString<int32_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeUInt32) {
- PrintScalarToString<uint32_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeInt64) {
- PrintScalarToString<int64_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeUInt64) {
- PrintScalarToString<uint64_t>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeFloat16) {
- PrintScalarToString<float16>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeFloat32) {
- PrintScalarToString<float>(str_data_ptr, tensor_type, buf);
- } else if (type_id == TypeId::kNumberTypeFloat64) {
- PrintScalarToString<double>(str_data_ptr, tensor_type, buf);
- } else {
- MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << tensor_type << ".";
- }
- }
-
- bool judgeLengthValid(const size_t str_len, const string &tensor_type) {
- auto type_iter = type_size_map.find(tensor_type);
- if (type_iter == type_size_map.end()) {
- MS_LOG(EXCEPTION) << "type of scalar to print is not support.";
- }
- return str_len == type_iter->second;
- }
-
- #ifndef NO_DLIB
- bool ConvertDataItem2Tensor(const std::vector<tdt::DataItem> &items) {
- // Acquire Python GIL
- py::gil_scoped_acquire gil_acquire;
- std::ostringstream buf;
- bool ret_end_sequence = false;
- for (auto &item : items) {
- if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) {
- ret_end_sequence = true;
- break;
- }
- std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_);
- MS_EXCEPTION_IF_NULL(str_data_ptr);
- if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) {
- if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) {
- MS_LOG(EXCEPTION) << "Print op receive data length is invalid.";
- }
- convertDataItem2Scalar(str_data_ptr->data(), item.tensorType_, &buf);
- continue;
- }
-
- ShapeVector tensor_shape;
- size_t totaldims = 1;
- if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) {
- MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_;
- continue;
- }
-
- if (item.tensorType_ == "string") {
- std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_);
- buf << data << std::endl;
- } else {
- auto type_iter = print_type_map.find(item.tensorType_);
- if (type_iter == print_type_map.end()) {
- MS_LOG(ERROR) << "type of tensor need to print is not support " << item.tensorType_;
- continue;
- }
- auto type_id = type_iter->second;
- mindspore::tensor::Tensor print_tensor(type_id, tensor_shape);
- auto memory_size = totaldims * type_size_map[item.tensorType_];
- if (PrintTensorToString(str_data_ptr->data(), &print_tensor, memory_size)) {
- buf << print_tensor.ToStringNoLimit() << std::endl;
- }
- }
- }
- std::cout << buf.str() << std::endl;
- return ret_end_sequence;
- }
-
- bool SaveDataItem2File(const std::vector<tdt::DataItem> &items, const std::string &print_file_path, prntpb::Print print,
- std::fstream *output) {
- bool ret_end_thread = false;
- for (auto &item : items) {
- if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) {
- ret_end_thread = true;
- break;
- }
- prntpb::Print_Value *value = print.add_value();
- std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_);
- MS_EXCEPTION_IF_NULL(str_data_ptr);
- if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) {
- if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) {
- MS_LOG(ERROR) << "Print op receive data length is invalid.";
- ret_end_thread = true;
- }
- }
-
- ShapeVector tensor_shape;
- size_t totaldims = 1;
- if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) {
- MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_;
- ret_end_thread = true;
- }
-
- if (item.tensorType_ == "string") {
- std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_);
- value->set_desc(data);
- } else {
- auto parse_type = GetParseType(item.tensorType_);
- prntpb::TensorProto *tensor = value->mutable_tensor();
- if (!(item.tensorShape_ == kShapeScalar) && !(item.tensorShape_ == kShapeNone)) {
- for (const auto &dim : tensor_shape) {
- tensor->add_dims(static_cast<::google::protobuf::int64>(dim));
- }
- }
- tensor->set_tensor_type(parse_type);
- std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_);
- tensor->set_tensor_content(data);
- }
-
- if (!print.SerializeToOstream(output)) {
- MS_LOG(ERROR) << "Save print file:" << print_file_path << " fail.";
- ret_end_thread = true;
- break;
- }
- print.Clear();
- }
- return ret_end_thread;
- }
-
- void TensorPrint::operator()() {
- prntpb::Print print;
- auto ms_context = MsContext::GetInstance();
- MS_EXCEPTION_IF_NULL(ms_context);
- std::string print_file_path = ms_context->get_param<std::string>(MS_CTX_PRINT_FILE_PATH);
- if (print_file_path == "") {
- while (true) {
- std::vector<tdt::DataItem> bundle;
- if (tdt::TdtHostPopData("_npu_log", bundle) != 0) {
- break;
- }
- if (ConvertDataItem2Tensor(bundle)) {
- break;
- }
- }
- } else {
- std::fstream output(print_file_path, std::ios::out | std::ios::trunc | std::ios::binary);
- while (true) {
- std::vector<tdt::DataItem> bundle;
- if (tdt::TdtHostPopData("_npu_log", bundle) != 0) {
- break;
- }
- if (SaveDataItem2File(bundle, print_file_path, print, &output)) {
- break;
- }
- }
- output.close();
- std::string path_string = print_file_path;
- if (chmod(common::SafeCStr(path_string), S_IRUSR) == -1) {
- MS_LOG(ERROR) << "Modify file:" << print_file_path << " to r fail.";
- return;
- }
- }
- }
- #endif
- } // namespace mindspore
|