|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Test util functions used in distribution classes.
- """
- import numpy as np
- import pytest
-
- from mindspore.nn.cell import Cell
- from mindspore import context
- from mindspore import dtype
- from mindspore import Tensor
- from mindspore.common.parameter import Parameter
- from mindspore.nn.probability.distribution._utils.utils import set_param_type, \
- cast_to_tensor, CheckTuple, CheckTensor
-
- def test_set_param_type():
- """
- Test set_param_type function.
- """
- tensor_fp16 = Tensor(0.1, dtype=dtype.float16)
- tensor_fp32 = Tensor(0.1, dtype=dtype.float32)
- tensor_fp64 = Tensor(0.1, dtype=dtype.float64)
- tensor_int32 = Tensor(0.1, dtype=dtype.int32)
- array_fp32 = np.array(1.0).astype(np.float32)
- array_fp64 = np.array(1.0).astype(np.float64)
- array_int32 = np.array(1.0).astype(np.int32)
-
- dict1 = {'a': tensor_fp32, 'b': 1.0, 'c': tensor_fp32}
- dict2 = {'a': tensor_fp32, 'b': 1.0, 'c': tensor_fp64}
- dict3 = {'a': tensor_int32, 'b': 1.0, 'c': tensor_int32}
- dict4 = {'a': array_fp32, 'b': 1.0, 'c': tensor_fp32}
- dict5 = {'a': array_fp32, 'b': 1.0, 'c': array_fp64}
- dict6 = {'a': array_fp32, 'b': 1.0, 'c': array_int32}
- dict7 = {'a': 1.0}
- dict8 = {'a': 1.0, 'b': 1.0, 'c': 1.0}
- dict9 = {'a': tensor_fp16, 'b': tensor_fp16, 'c': tensor_fp16}
- dict10 = {'a': tensor_fp64, 'b': tensor_fp64, 'c': tensor_fp64}
- dict11 = {'a': array_fp64, 'b': array_fp64, 'c': tensor_fp64}
-
- ans1 = set_param_type(dict1, dtype.float16)
- assert ans1 == dtype.float32
-
- with pytest.raises(TypeError):
- set_param_type(dict2, dtype.float32)
-
- ans3 = set_param_type(dict3, dtype.float16)
- assert ans3 == dtype.float32
- ans4 = set_param_type(dict4, dtype.float16)
- assert ans4 == dtype.float32
-
- with pytest.raises(TypeError):
- set_param_type(dict5, dtype.float32)
- with pytest.raises(TypeError):
- set_param_type(dict6, dtype.float32)
-
- ans7 = set_param_type(dict7, dtype.float32)
- assert ans7 == dtype.float32
- ans8 = set_param_type(dict8, dtype.float32)
- assert ans8 == dtype.float32
- ans9 = set_param_type(dict9, dtype.float32)
- assert ans9 == dtype.float16
- ans10 = set_param_type(dict10, dtype.float32)
- assert ans10 == dtype.float32
- ans11 = set_param_type(dict11, dtype.float32)
- assert ans11 == dtype.float32
-
- def test_cast_to_tensor():
- """
- Test cast_to_tensor.
- """
- with pytest.raises(ValueError):
- cast_to_tensor(None, dtype.float32)
- with pytest.raises(TypeError):
- cast_to_tensor(True, dtype.float32)
- with pytest.raises(TypeError):
- cast_to_tensor({'a': 1, 'b': 2}, dtype.float32)
- with pytest.raises(TypeError):
- cast_to_tensor('tensor', dtype.float32)
-
- ans1 = cast_to_tensor(Parameter(Tensor(0.1, dtype=dtype.float32), 'param'))
- assert isinstance(ans1, Parameter)
- ans2 = cast_to_tensor(np.array(1.0).astype(np.float32))
- assert isinstance(ans2, Tensor)
- ans3 = cast_to_tensor([1.0, 2.0])
- assert isinstance(ans3, Tensor)
- ans4 = cast_to_tensor(Tensor(0.1, dtype=dtype.float32), dtype.float32)
- assert isinstance(ans4, Tensor)
- ans5 = cast_to_tensor(0.1, dtype.float32)
- assert isinstance(ans5, Tensor)
- ans6 = cast_to_tensor(1, dtype.float32)
- assert isinstance(ans6, Tensor)
-
- class Net(Cell):
- """
- Test class: CheckTuple.
- """
- def __init__(self, value):
- super(Net, self).__init__()
- self.checktuple = CheckTuple()
- self.value = value
-
- def construct(self, value=None):
- if value is None:
- return self.checktuple(self.value, 'input')
- return self.checktuple(value, 'input')
-
- def test_check_tuple():
- """
- Test CheckTuple.
- """
- net1 = Net((1, 2, 3))
- ans1 = net1()
- assert isinstance(ans1, tuple)
-
- with pytest.raises(TypeError):
- net2 = Net('tuple')
- net2()
-
- context.set_context(mode=context.GRAPH_MODE)
- net3 = Net((1, 2, 3))
- ans3 = net3()
- assert isinstance(ans3, tuple)
-
- with pytest.raises(TypeError):
- net4 = Net('tuple')
- net4()
-
- class Net1(Cell):
- """
- Test class: CheckTensor.
- """
- def __init__(self, value):
- super(Net1, self).__init__()
- self.checktensor = CheckTensor()
- self.value = value
- self.context = context.get_context('mode')
-
- def construct(self, value=None):
- value = self.value if value is None else value
- if self.context == 0:
- self.checktensor(value, 'input')
- return value
- return self.checktensor(value, 'input')
-
- def test_check_tensor():
- """
- Test CheckTensor.
- """
- value = Tensor(0.1, dtype=dtype.float32)
- net1 = Net1(value)
- ans1 = net1()
- assert isinstance(ans1, Tensor)
- ans1 = net1(value)
- assert isinstance(ans1, Tensor)
-
- with pytest.raises(TypeError):
- net2 = Net1('tuple')
- net2()
-
- context.set_context(mode=context.GRAPH_MODE)
- net3 = Net1(value)
- ans3 = net3()
- assert isinstance(ans3, Tensor)
- ans3 = net3(value)
- assert isinstance(ans3, Tensor)
-
- with pytest.raises(TypeError):
- net4 = Net1('tuple')
- net4()
|