|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Recall."""
- import sys
-
- import numpy as np
-
- from mindspore._checkparam import Validator as validator
- from .metric import EvaluationBase
-
-
- class Recall(EvaluationBase):
- r"""
- Calculates recall for classification and multilabel data.
-
- The recall class creates two local variables, :math:`\text{true_positive}` and :math:`\text{false_negative}`,
- that are used to compute the recall. This value is ultimately returned as the recall, an idempotent operation
- that simply divides :math:`\text{true_positive}` by the sum of :math:`\text{true_positive}` and
- :math:`\text{false_negative}`.
-
- .. math::
- \text{recall} = \frac{\text{true_positive}}{\text{true_positive} + \text{false_negative}}
-
- Note:
- In the multi-label cases, the elements of :math:`y` and :math:`y_{pred}` must be 0 or 1.
-
- Args:
- eval_type (str): Metric to calculate the recall over a dataset, for classification or
- multilabel. Default: 'classification'.
-
- Examples:
- >>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- >>> y = Tensor(np.array([1, 0, 1]))
- >>> metric = nn.Recall('classification')
- >>> metric.clear()
- >>> metric.update(x, y)
- >>> recall = metric.eval()
- >>> print(recall)
- [1. 0.5]
- """
- def __init__(self, eval_type='classification'):
- super(Recall, self).__init__(eval_type)
- self.eps = sys.float_info.min
- self.clear()
-
- def clear(self):
- """Clears the internal evaluation result."""
- self._class_num = 0
- if self._type == "multilabel":
- self._true_positives = np.empty(0)
- self._actual_positives = np.empty(0)
- self._true_positives_average = 0
- self._actual_positives_average = 0
- else:
- self._true_positives = 0
- self._actual_positives = 0
-
- def update(self, *inputs):
- """
- Updates the internal evaluation result with `y_pred` and `y`.
-
- Args:
- inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
- For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
- of floating numbers in range :math:`[0, 1]`
- and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
- is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
- encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
- For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
- values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
- are both :math:`(N, C)`.
-
-
- Raises:
- ValueError: If the number of input is not 2.
- """
- if len(inputs) != 2:
- raise ValueError('Recall need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
- y_pred = self._convert_data(inputs[0])
- y = self._convert_data(inputs[1])
- if self._type == 'classification' and y_pred.ndim == y.ndim and self._check_onehot_data(y):
- y = y.argmax(axis=1)
- self._check_shape(y_pred, y)
- self._check_value(y_pred, y)
-
- if self._class_num == 0:
- self._class_num = y_pred.shape[1]
- elif y_pred.shape[1] != self._class_num:
- raise ValueError('Class number not match, last input data contain {} classes, but current data contain {} '
- 'classes'.format(self._class_num, y_pred.shape[1]))
-
- class_num = self._class_num
- if self._type == "classification":
- if y.max() + 1 > class_num:
- raise ValueError('y_pred contains {} classes less than y contains {} classes.'.
- format(class_num, y.max() + 1))
- y = np.eye(class_num)[y.reshape(-1)]
- indices = y_pred.argmax(axis=1).reshape(-1)
- y_pred = np.eye(class_num)[indices]
- elif self._type == "multilabel":
- y_pred = y_pred.swapaxes(1, 0).reshape(class_num, -1)
- y = y.swapaxes(1, 0).reshape(class_num, -1)
-
- actual_positives = y.sum(axis=0)
- true_positives = (y * y_pred).sum(axis=0)
-
- if self._type == "multilabel":
- self._true_positives_average += np.sum(true_positives / (actual_positives + self.eps))
- self._actual_positives_average += len(actual_positives)
- self._true_positives = np.concatenate((self._true_positives, true_positives), axis=0)
- self._actual_positives = np.concatenate((self._actual_positives, actual_positives), axis=0)
- else:
- self._true_positives += true_positives
- self._actual_positives += actual_positives
-
- def eval(self, average=False):
- """
- Computes the recall.
-
- Args:
- average (bool): Specify whether calculate the average recall. Default value is False.
-
- Returns:
- Float, the computed result.
- """
- if self._class_num == 0:
- raise RuntimeError('Input number of samples can not be 0.')
-
- validator.check_value_type("average", average, [bool], self.__class__.__name__)
- result = self._true_positives / (self._actual_positives + self.eps)
-
- if average:
- if self._type == "multilabel":
- result = self._true_positives_average / (self._actual_positives_average + self.eps)
- return result.mean()
- return result
|