|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- #################pre_train bert example on zh-wiki########################
- python run_pretrain.py
- """
-
- import os
- import argparse
- import mindspore.communication.management as D
- from mindspore.communication.management import get_rank
- import mindspore.common.dtype as mstype
- from mindspore import context
- from mindspore.train.model import Model
- from mindspore.context import ParallelMode
- from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.train_thor import ConvertModelUtils
- from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay, THOR
- from mindspore import log as logger
- from mindspore.common import set_seed
- from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \
- BertTrainAccumulationAllReduceEachWithLossScaleCell, \
- BertTrainAccumulationAllReducePostWithLossScaleCell, \
- BertTrainOneStepWithLossScaleCellForAdam, \
- AdamWeightDecayForBert
- from src.dataset import create_bert_dataset
- from src.config import cfg, bert_net_cfg
- from src.utils import LossCallBack, BertLearningRate
- _current_dir = os.path.dirname(os.path.realpath(__file__))
-
-
- def _set_bert_all_reduce_split():
- """set bert all_reduce fusion split, support num_hidden_layers is 12 and 24."""
- device_target = context.get_context('device_target')
- enable_graph_kernel = context.get_context('enable_graph_kernel')
- device_num = context.get_auto_parallel_context('device_num')
- if bert_net_cfg.num_hidden_layers == 12:
- if bert_net_cfg.use_relative_positions:
- context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 87, 116, 145, 174, 203, 217])
- else:
- context.set_auto_parallel_context(all_reduce_fusion_config=[28, 55, 82, 109, 136, 163, 190, 205])
- if device_target == 'GPU' and enable_graph_kernel and device_num == 8:
- context.set_auto_parallel_context(all_reduce_fusion_config=[180, 205])
- elif device_target == 'GPU' and enable_graph_kernel and device_num == 16:
- context.set_auto_parallel_context(all_reduce_fusion_config=[120, 205])
- elif bert_net_cfg.num_hidden_layers == 24:
- if bert_net_cfg.use_relative_positions:
- context.set_auto_parallel_context(all_reduce_fusion_config=[30, 90, 150, 210, 270, 330, 390, 421])
- else:
- context.set_auto_parallel_context(all_reduce_fusion_config=[38, 93, 148, 203, 258, 313, 368, 397])
-
-
- def _get_optimizer(args_opt, network):
- """get bert optimizer, support Lamb, Momentum, AdamWeightDecay."""
- if cfg.optimizer == 'Lamb':
- lr_schedule = BertLearningRate(learning_rate=cfg.Lamb.learning_rate,
- end_learning_rate=cfg.Lamb.end_learning_rate,
- warmup_steps=cfg.Lamb.warmup_steps,
- decay_steps=args_opt.train_steps,
- power=cfg.Lamb.power)
- params = network.trainable_params()
- decay_params = list(filter(cfg.Lamb.decay_filter, params))
- other_params = list(filter(lambda x: not cfg.Lamb.decay_filter(x), params))
- group_params = [{'params': decay_params, 'weight_decay': cfg.Lamb.weight_decay},
- {'params': other_params},
- {'order_params': params}]
- optimizer = Lamb(group_params, learning_rate=lr_schedule, eps=cfg.Lamb.eps)
- elif cfg.optimizer == 'Momentum':
- optimizer = Momentum(network.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
- momentum=cfg.Momentum.momentum)
- elif cfg.optimizer == 'AdamWeightDecay':
- lr_schedule = BertLearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
- end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
- warmup_steps=cfg.AdamWeightDecay.warmup_steps,
- decay_steps=args_opt.train_steps,
- power=cfg.AdamWeightDecay.power)
- params = network.trainable_params()
- decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params))
- other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params))
- group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
- {'params': other_params, 'weight_decay': 0.0},
- {'order_params': params}]
- if args_opt.enable_lossscale == "true" and args_opt.device_target == 'GPU':
- optimizer = AdamWeightDecayForBert(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
- else:
- optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
- elif cfg.optimizer == "Thor":
- from src.utils import get_bert_thor_lr, get_bert_thor_damping
- lr = get_bert_thor_lr(cfg.Thor.lr_max, cfg.Thor.lr_min, cfg.Thor.lr_power, cfg.Thor.lr_total_steps)
- damping = get_bert_thor_damping(cfg.Thor.damping_max, cfg.Thor.damping_min, cfg.Thor.damping_power,
- cfg.Thor.damping_total_steps)
- split_indices = None
- if bert_net_cfg.num_hidden_layers == 12:
- if bert_net_cfg.use_relative_positions:
- split_indices = [29, 58, 87, 116, 145, 174, 203, 217]
- else:
- split_indices = [28, 55, 82, 109, 136, 163, 190, 205]
- elif bert_net_cfg.num_hidden_layers == 24:
- if bert_net_cfg.use_relative_positions:
- split_indices = [30, 90, 150, 210, 270, 330, 390, 421]
- else:
- split_indices = [38, 93, 148, 203, 258, 313, 368, 397]
- optimizer = THOR(network, lr, damping, cfg.Thor.momentum,
- cfg.Thor.weight_decay, cfg.Thor.loss_scale, cfg.batch_size,
- decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
- split_indices=split_indices)
- else:
- raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecay, Thor]".
- format(cfg.optimizer))
- return optimizer
-
-
- def _auto_enable_graph_kernel(device_target, graph_kernel_mode):
- """Judge whether is suitable to enable graph kernel."""
- return graph_kernel_mode in ("auto", "true") and device_target == 'GPU' and \
- cfg.bert_network == 'base' and cfg.optimizer == 'AdamWeightDecay'
-
-
- def _set_graph_kernel_context(device_target, enable_graph_kernel, is_auto_enable_graph_kernel):
- if enable_graph_kernel == "true" or is_auto_enable_graph_kernel:
- if device_target == 'GPU':
- context.set_context(enable_graph_kernel=True)
- else:
- logger.warning('Graph kernel only supports GPU back-end now, run with graph kernel off.')
-
-
- def _check_compute_type(args_opt, is_auto_enable_graph_kernel):
- if args_opt.device_target == 'GPU' and bert_net_cfg.compute_type != mstype.float32 and \
- not is_auto_enable_graph_kernel:
- warning_message = 'Gpu only support fp32 temporarily, run with fp32.'
- bert_net_cfg.compute_type = mstype.float32
- if args_opt.enable_lossscale == "true":
- args_opt.enable_lossscale = "false"
- warning_message = 'Gpu only support fp32 temporarily, run with fp32 and disable lossscale.'
- logger.warning(warning_message)
-
-
- def argparse_init():
- """Argparse init."""
- parser = argparse.ArgumentParser(description='bert pre_training')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='device where the code will be implemented. (Default: Ascend)')
- parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
- help="Run distribute, default is false.")
- parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=["true", "false"],
- help="Enable save checkpoint, default is true.")
- parser.add_argument("--enable_lossscale", type=str, default="true", choices=["true", "false"],
- help="Use lossscale or not, default is not.")
- parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"],
- help="Enable shuffle for dataset, default is true.")
- parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"],
- help="Enable data sink, default is true.")
- parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
- parser.add_argument("--accumulation_steps", type=int, default="1",
- help="Accumulating gradients N times before weight update, default is 1.")
- parser.add_argument("--allreduce_post_accumulation", type=str, default="true", choices=["true", "false"],
- help="Whether to allreduce after accumulation of N steps or after each step, default is true.")
- parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
- parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
- parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
- "default is 1000.")
- parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1, "
- "meaning run all steps according to epoch number.")
- parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
- parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
- parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
- parser.add_argument("--enable_graph_kernel", type=str, default="auto", choices=["auto", "true", "false"],
- help="Accelerate by graph kernel, default is auto.")
- return parser
-
-
- def run_pretrain():
- """pre-train bert_clue"""
- parser = argparse_init()
- args_opt = parser.parse_args()
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
- context.set_context(reserve_class_name_in_scope=False)
- is_auto_enable_graph_kernel = _auto_enable_graph_kernel(args_opt.device_target, args_opt.enable_graph_kernel)
- _set_graph_kernel_context(args_opt.device_target, args_opt.enable_graph_kernel, is_auto_enable_graph_kernel)
- ckpt_save_dir = args_opt.save_checkpoint_path
- if args_opt.distribute == "true":
- if args_opt.device_target == 'Ascend':
- D.init()
- device_num = args_opt.device_num
- rank = args_opt.device_id % device_num
- else:
- D.init()
- device_num = D.get_group_size()
- rank = D.get_rank()
- ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(get_rank()) + '/'
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
- device_num=device_num)
- _set_bert_all_reduce_split()
- else:
- rank = 0
- device_num = 1
-
- _check_compute_type(args_opt, is_auto_enable_graph_kernel)
-
- if args_opt.accumulation_steps > 1:
- logger.info("accumulation steps: {}".format(args_opt.accumulation_steps))
- logger.info("global batch size: {}".format(cfg.batch_size * args_opt.accumulation_steps))
- if args_opt.enable_data_sink == "true":
- args_opt.data_sink_steps *= args_opt.accumulation_steps
- logger.info("data sink steps: {}".format(args_opt.data_sink_steps))
- if args_opt.enable_save_ckpt == "true":
- args_opt.save_checkpoint_steps *= args_opt.accumulation_steps
- logger.info("save checkpoint steps: {}".format(args_opt.save_checkpoint_steps))
-
- ds = create_bert_dataset(device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir)
- net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
-
- new_repeat_count = args_opt.epoch_size * ds.get_dataset_size() // args_opt.data_sink_steps
- if args_opt.train_steps > 0:
- train_steps = args_opt.train_steps * args_opt.accumulation_steps
- new_repeat_count = min(new_repeat_count, train_steps // args_opt.data_sink_steps)
- else:
- args_opt.train_steps = args_opt.epoch_size * ds.get_dataset_size() // args_opt.accumulation_steps
- logger.info("train steps: {}".format(args_opt.train_steps))
-
- optimizer = _get_optimizer(args_opt, net_with_loss)
- callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(ds.get_dataset_size())]
- if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
- config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
- keep_checkpoint_max=args_opt.save_checkpoint_num)
- ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert',
- directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
- callback.append(ckpoint_cb)
-
- if args_opt.load_checkpoint_path:
- param_dict = load_checkpoint(args_opt.load_checkpoint_path)
- load_param_into_net(net_with_loss, param_dict)
-
- if args_opt.enable_lossscale == "true":
- update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
- scale_factor=cfg.scale_factor,
- scale_window=cfg.scale_window)
- accumulation_steps = args_opt.accumulation_steps
- enable_global_norm = cfg.enable_global_norm
- if accumulation_steps <= 1:
- if cfg.optimizer == 'AdamWeightDecay' and args_opt.device_target == 'GPU':
- net_with_grads = BertTrainOneStepWithLossScaleCellForAdam(net_with_loss, optimizer=optimizer,
- scale_update_cell=update_cell)
- else:
- net_with_grads = BertTrainOneStepWithLossScaleCell(net_with_loss, optimizer=optimizer,
- scale_update_cell=update_cell)
- else:
- allreduce_post = args_opt.distribute == "false" or args_opt.allreduce_post_accumulation == "true"
- net_with_accumulation = (BertTrainAccumulationAllReducePostWithLossScaleCell if allreduce_post else
- BertTrainAccumulationAllReduceEachWithLossScaleCell)
- net_with_grads = net_with_accumulation(net_with_loss, optimizer=optimizer,
- scale_update_cell=update_cell,
- accumulation_steps=accumulation_steps,
- enable_global_norm=enable_global_norm)
- else:
- net_with_grads = BertTrainOneStepCell(net_with_loss, optimizer=optimizer)
-
- model = Model(net_with_grads)
- model = ConvertModelUtils().convert_to_thor_model(model, network=net_with_grads, optimizer=optimizer,
- frequency=cfg.Thor.frequency)
- model.train(new_repeat_count, ds, callbacks=callback,
- dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
-
-
- if __name__ == '__main__':
- set_seed(0)
- run_pretrain()
|