|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Weight average."""
- import os
- import argparse
- import numpy as np
- from mindspore.train.serialization import load_checkpoint
-
- parser = argparse.ArgumentParser(description='transformer')
- parser.add_argument("--input_files", type=str, default=None, required=False,
- help="Multi ckpt files path.")
- parser.add_argument("--input_folder", type=str, default=None, required=False,
- help="Ckpt files folder.")
- parser.add_argument("--output_file", type=str, default=None, required=True,
- help="Output model file path.")
-
-
- def average_me_models(ckpt_list):
- """
- Average multi ckpt params.
-
- Args:
- ckpt_list (list): Ckpt paths.
-
- Returns:
- dict, params dict.
- """
- avg_model = {}
- # load all checkpoint
- for ckpt in ckpt_list:
- if not ckpt.endswith(".ckpt"):
- continue
- if not os.path.exists(ckpt):
- raise FileNotFoundError(f"Checkpoint file is not existed.")
-
- print(f" | Loading ckpt from {ckpt}.")
- ms_ckpt = load_checkpoint(ckpt)
- for param_name in ms_ckpt:
- if param_name not in avg_model:
- avg_model[param_name] = []
- avg_model[param_name].append(ms_ckpt[param_name].data.asnumpy())
-
- for name in avg_model:
- avg_model[name] = sum(avg_model[name]) / float(len(ckpt_list))
-
- return avg_model
-
-
- def main():
- """Entry point."""
- args, _ = parser.parse_known_args()
-
- if not args.input_files and not args.input_folder:
- raise ValueError("`--input_files` or `--input_folder` must be provided one as least.")
-
- ckpt_list = []
- if args.input_files:
- ckpt_list.extend(args.input_files.split(","))
-
- if args.input_folder and os.path.exists(args.input_folder) and os.path.isdir(args.input_folder):
- for file in os.listdir(args.input_folder):
- ckpt_list.append(os.path.join(args.input_folder, file))
-
- avg_weights = average_me_models(ckpt_list)
- np.savez(args.output_file, **avg_weights)
-
-
- if __name__ == '__main__':
- main()
|