|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """GoogleNet"""
- import mindspore.nn as nn
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.ops import operations as P
-
-
- def weight_variable():
- """Weight variable."""
- return TruncatedNormal(0.02)
-
-
- class Conv2dBlock(nn.Cell):
- """
- Basic convolutional block
- Args:
- in_channles (int): Input channel.
- out_channels (int): Output channel.
- kernel_size (int): Input kernel size. Default: 1
- stride (int): Stride size for the first convolutional layer. Default: 1.
- padding (int): Implicit paddings on both sides of the input. Default: 0.
- pad_mode (str): Padding mode. Optional values are "same", "valid", "pad". Default: "same".
- Returns:
- Tensor, output tensor.
- """
-
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"):
- super(Conv2dBlock, self).__init__()
- self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
- padding=padding, pad_mode=pad_mode, weight_init=weight_variable())
- self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
- self.relu = nn.ReLU()
-
- def construct(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- return x
-
-
- class Inception(nn.Cell):
- """
- Inception Block
- """
-
- def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
- super(Inception, self).__init__()
- self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
- self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
- Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
- self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
- Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
- self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
- self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
- self.concat = P.Concat(axis=1)
-
- def construct(self, x):
- branch1 = self.b1(x)
- branch2 = self.b2(x)
- branch3 = self.b3(x)
- cell, argmax = self.maxpool(x)
- branch4 = self.b4(cell)
- _ = argmax
- return self.concat((branch1, branch2, branch3, branch4))
-
-
- class GoogleNet(nn.Cell):
- """
- Googlenet architecture
- """
-
- def __init__(self, num_classes):
- super(GoogleNet, self).__init__()
- self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
- self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
-
- self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
- self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
- self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
-
- self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
- self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
- self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
-
- self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
- self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
- self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
- self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
- self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
- self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
-
- self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
- self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
-
- self.mean = P.ReduceMean(keep_dims=True)
- self.dropout = nn.Dropout(keep_prob=0.8)
- self.flatten = nn.Flatten()
- self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
- bias_init=weight_variable())
-
-
- def construct(self, x):
- x = self.conv1(x)
- x, argmax = self.maxpool1(x)
-
- x = self.conv2(x)
- x = self.conv3(x)
- x, argmax = self.maxpool2(x)
-
- x = self.block3a(x)
- x = self.block3b(x)
- x, argmax = self.maxpool3(x)
-
- x = self.block4a(x)
- x = self.block4b(x)
- x = self.block4c(x)
- x = self.block4d(x)
- x = self.block4e(x)
- x, argmax = self.maxpool4(x)
-
- x = self.block5a(x)
- x = self.block5b(x)
-
- x = self.mean(x, (2, 3))
- x = self.flatten(x)
- x = self.classifier(x)
-
- _ = argmax
- return x
|