|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- GCN training script.
- """
-
- import time
- import argparse
-
- import numpy as np
- from matplotlib import pyplot as plt
- from matplotlib import animation
- from sklearn import manifold
- from mindspore import context
-
- from model_zoo.gcn.src.gcn import GCN, LossAccuracyWrapper, TrainNetWrapper
- from model_zoo.gcn.src.config import ConfigGCN
- from model_zoo.gcn.src.dataset import get_adj_features_labels, get_mask
-
-
- def t_SNE(out_feature, dim):
- t_sne = manifold.TSNE(n_components=dim, init='pca', random_state=0)
- return t_sne.fit_transform(out_feature)
-
-
- def update_graph(i, data, scat, plot):
- scat.set_offsets(data[i])
- plt.title('t-SNE visualization of Epoch:{0}'.format(i))
- return scat, plot
-
-
- def train():
- """Train model."""
- parser = argparse.ArgumentParser(description='GCN')
- parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Dataset directory')
- parser.add_argument('--seed', type=int, default=123, help='Random seed')
- parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training')
- parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation')
- parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test')
- parser.add_argument('--save_TSNE', type=bool, default=False, help='Whether to save t-SNE graph')
- args_opt = parser.parse_args()
-
- np.random.seed(args_opt.seed)
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend", save_graphs=False)
- config = ConfigGCN()
- adj, feature, label_onehot, label = get_adj_features_labels(args_opt.data_dir)
-
- nodes_num = label_onehot.shape[0]
- train_mask = get_mask(nodes_num, 0, args_opt.train_nodes_num)
- eval_mask = get_mask(nodes_num, args_opt.train_nodes_num, args_opt.train_nodes_num + args_opt.eval_nodes_num)
- test_mask = get_mask(nodes_num, nodes_num - args_opt.test_nodes_num, nodes_num)
-
- class_num = label_onehot.shape[1]
- gcn_net = GCN(config, adj, feature, class_num)
- gcn_net.add_flags_recursive(fp16=True)
-
- eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay)
- test_net = LossAccuracyWrapper(gcn_net, label_onehot, test_mask, config.weight_decay)
- train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config)
-
- loss_list = []
-
- if args_opt.save_TSNE:
- out_feature = gcn_net()
- tsne_result = t_SNE(out_feature.asnumpy(), 2)
- graph_data = []
- graph_data.append(tsne_result)
- fig = plt.figure()
- scat = plt.scatter(tsne_result[:, 0], tsne_result[:, 1], s=2, c=label, cmap='rainbow')
- plt.title('t-SNE visualization of Epoch:0', fontsize='large', fontweight='bold', verticalalignment='center')
-
- for epoch in range(config.epochs):
- t = time.time()
-
- train_net.set_train()
- train_result = train_net()
- train_loss = train_result[0].asnumpy()
- train_accuracy = train_result[1].asnumpy()
-
- eval_net.set_train(False)
- eval_result = eval_net()
- eval_loss = eval_result[0].asnumpy()
- eval_accuracy = eval_result[1].asnumpy()
-
- loss_list.append(eval_loss)
- print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss),
- "train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss),
- "val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t))
-
- if args_opt.save_TSNE:
- out_feature = gcn_net()
- tsne_result = t_SNE(out_feature.asnumpy(), 2)
- graph_data.append(tsne_result)
-
- if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]):
- print("Early stopping...")
- break
-
- t_test = time.time()
- test_net.set_train(False)
- test_result = test_net()
- test_loss = test_result[0].asnumpy()
- test_accuracy = test_result[1].asnumpy()
- print("Test set results:", "loss=", "{:.5f}".format(test_loss),
- "accuracy=", "{:.5f}".format(test_accuracy), "time=", "{:.5f}".format(time.time() - t_test))
-
- if args_opt.save_TSNE:
- ani = animation.FuncAnimation(fig, update_graph, frames=range(config.epochs + 1), fargs=(graph_data, scat, plt))
- ani.save('t-SNE_visualization.gif', writer='imagemagick')
-
-
- if __name__ == '__main__':
- train()
|