|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Training entry file"""
- import os
-
- import argparse
- from absl import logging
-
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore import context, Model
- from mindspore.context import ParallelMode
- from mindspore.communication.management import get_rank, get_group_size, init
- from mindspore.common import set_seed
-
- from src.dataset import create_dataset
- from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap
-
- from config import cfg
-
- set_seed(1)
-
- logging.set_verbosity(logging.INFO)
-
- parser = argparse.ArgumentParser(description='NCF')
- parser.add_argument("--data_path", type=str, default="./dataset/") # The location of the input data.
- parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"]) # Dataset to be trained and evaluated. ["ml-1m", "ml-20m"]
- parser.add_argument("--train_epochs", type=int, default=14) # The number of epochs used to train.
- parser.add_argument("--batch_size", type=int, default=256) # Batch size for training and evaluation
- parser.add_argument("--num_neg", type=int, default=4) # The Number of negative instances to pair with a positive instance.
- parser.add_argument("--output_path", type=str, default="./output/") # The location of the output file.
- parser.add_argument("--loss_file_name", type=str, default="loss.log") # Loss output file.
- parser.add_argument("--checkpoint_path", type=str, default="./checkpoint/") # The location of the checkpoint file.
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='device where the code will be implemented. (Default: Ascend)')
- parser.add_argument('--device_id', type=int, default=1, help='device id of GPU or Ascend. (Default: None)')
- parser.add_argument('--is_distributed', type=int, default=0, help='if multi device')
- parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
- parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
- args = parser.parse_args()
-
- def test_train():
- """train entry method"""
- if args.is_distributed:
- if args.device_target == "Ascend":
- init()
- context.set_context(device_id=args.device_id)
- elif args.device_target == "GPU":
- init()
-
- args.rank = get_rank()
- args.group_size = get_group_size()
- device_num = args.group_size
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- parameter_broadcast=True, gradients_mean=True)
- else:
- context.set_context(device_id=args.device_id)
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
-
- if not os.path.exists(args.output_path):
- os.makedirs(args.output_path)
-
- layers = cfg.layers
- num_factors = cfg.num_factors
- epochs = args.train_epochs
-
- ds_train, num_train_users, num_train_items = create_dataset(test_train=True, data_dir=args.data_path,
- dataset=args.dataset, train_epochs=1,
- batch_size=args.batch_size, num_neg=args.num_neg)
- print("ds_train.size: {}".format(ds_train.get_dataset_size()))
-
- ncf_net = NCFModel(num_users=num_train_users,
- num_items=num_train_items,
- num_factors=num_factors,
- model_layers=layers,
- mf_regularization=0,
- mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
- mf_dim=16)
- loss_net = NetWithLossClass(ncf_net)
- train_net = TrainStepWrap(loss_net, ds_train.get_dataset_size() * (epochs + 1))
-
- train_net.set_train()
-
- model = Model(train_net)
- callback = LossMonitor(per_print_times=ds_train.get_dataset_size())
- ckpt_config = CheckpointConfig(save_checkpoint_steps=(4970845+args.batch_size-1)//(args.batch_size),
- keep_checkpoint_max=100)
- ckpoint_cb = ModelCheckpoint(prefix='NCF', directory=args.checkpoint_path, config=ckpt_config)
- model.train(epochs,
- ds_train,
- callbacks=[TimeMonitor(ds_train.get_dataset_size()), callback, ckpoint_cb],
- dataset_sink_mode=True)
-
-
- if __name__ == '__main__':
- test_train()
|