|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train squeezenet."""
- import os
- import argparse
- from mindspore import context
- from mindspore import Tensor
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model
- from mindspore.context import ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.common import set_seed
- from src.lr_generator import get_lr
- from src.CrossEntropySmooth import CrossEntropySmooth
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
- help='Model.')
- parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
- parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
- parser.add_argument('--device_num', type=int, default=1, help='Device num.')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
- parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
- parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
- args_opt = parser.parse_args()
-
- set_seed(1)
-
- if args_opt.net == "squeezenet":
- from src.squeezenet import SqueezeNet as squeezenet
- if args_opt.dataset == "cifar10":
- from src.config import config1 as config
- from src.dataset import create_dataset_cifar as create_dataset
- else:
- from src.config import config2 as config
- from src.dataset import create_dataset_imagenet as create_dataset
- else:
- from src.squeezenet import SqueezeNet_Residual as squeezenet
- if args_opt.dataset == "cifar10":
- from src.config import config3 as config
- from src.dataset import create_dataset_cifar as create_dataset
- else:
- from src.config import config4 as config
- from src.dataset import create_dataset_imagenet as create_dataset
-
- if __name__ == '__main__':
- target = args_opt.device_target
- ckpt_save_dir = config.save_checkpoint_path
-
- # init context
- context.set_context(mode=context.GRAPH_MODE,
- device_target=target)
- if args_opt.run_distribute:
- if target == "Ascend":
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id,
- enable_auto_mixed_precision=True)
- context.set_auto_parallel_context(
- device_num=args_opt.device_num,
- parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- init()
- # GPU target
- else:
- print("Squeezenet training on GPU performs badly now, and it is still in research..."
- "See model_zoo/research/cv/squeezenet to get up-to-date details.")
- init()
- context.set_auto_parallel_context(
- device_num=get_group_size(),
- parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(
- get_rank()) + "/"
-
- # create dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path,
- do_train=True,
- repeat_num=1,
- batch_size=config.batch_size,
- target=target)
- step_size = dataset.get_dataset_size()
-
- # define net
- net = squeezenet(num_classes=config.class_num)
-
- # load checkpoint
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- load_param_into_net(net, param_dict)
-
- # init lr
- lr = get_lr(lr_init=config.lr_init,
- lr_end=config.lr_end,
- lr_max=config.lr_max,
- total_epochs=config.epoch_size,
- warmup_epochs=config.warmup_epochs,
- pretrain_epochs=config.pretrain_epoch_size,
- steps_per_epoch=step_size,
- lr_decay_mode=config.lr_decay_mode)
- lr = Tensor(lr)
-
- # define loss
- if args_opt.dataset == "imagenet":
- if not config.use_label_smooth:
- config.label_smooth_factor = 0.0
- loss = CrossEntropySmooth(sparse=True,
- reduction='mean',
- smooth_factor=config.label_smooth_factor,
- num_classes=config.class_num)
- else:
- loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
-
- # define opt, model
- if target == "Ascend":
- loss_scale = FixedLossScaleManager(config.loss_scale,
- drop_overflow_update=False)
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
- lr,
- config.momentum,
- config.weight_decay,
- config.loss_scale,
- use_nesterov=True)
- model = Model(net,
- loss_fn=loss,
- optimizer=opt,
- loss_scale_manager=loss_scale,
- metrics={'acc'},
- amp_level="O2",
- keep_batchnorm_fp32=False)
- else:
- if target == "GPU":
- # GPU target
- print("Squeezenet training on GPU performs badly now, and it is still in research..."
- "See model_zoo/research/cv/squeezenet to get up-to-date details.")
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
- lr,
- config.momentum,
- config.weight_decay,
- use_nesterov=True)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
-
- # define callbacks
- time_cb = TimeMonitor(data_size=step_size)
- loss_cb = LossMonitor()
- cb = [time_cb, loss_cb]
- if config.save_checkpoint:
- config_ck = CheckpointConfig(
- save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
- directory=ckpt_save_dir,
- config=config_ck)
- cb += [ckpt_cb]
-
- # train model
- model.train(config.epoch_size - config.pretrain_epoch_size,
- dataset,
- callbacks=cb)
|