|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############export checkpoint file into geir and onnx models#################
- """
- import argparse
- import numpy as np
-
- import mindspore as ms
- from mindspore import Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
-
- from src.config import nasnet_a_mobile_config_gpu as cfg
- from src.nasnet_a_mobile import NASNetAMobile
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='checkpoint export')
- parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of nasnet_a_mobile (Default: None)')
- args_opt = parser.parse_args()
-
- net = NASNetAMobile(num_classes=cfg.num_classes, is_training=False)
- param_dict = load_checkpoint(args_opt.checkpoint)
- load_param_into_net(net, param_dict)
-
- input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_size, cfg.image_size]), ms.float32)
- export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX")
- export(net, input_arr, file_name=cfg.geir_filename, file_format="GEIR")
|