|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Uniform Distribution"""
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore._checkparam import Validator
- from mindspore.common import dtype as mstype
- from .distribution import Distribution
- from ._utils.utils import check_greater, check_distribution_name
- from ._utils.custom_ops import exp_generic, log_generic
-
-
- class Uniform(Distribution):
- """
- Example class: Uniform Distribution.
-
- Args:
- low (int, float, list, numpy.ndarray, Tensor, Parameter): The lower bound of the distribution.
- high (int, float, list, numpy.ndarray, Tensor, Parameter): The upper bound of the distribution.
- seed (int): The seed uses in sampling. The global seed is used if it is None. Default: None.
- dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32.
- name (str): The name of the distribution. Default: 'Uniform'.
-
- Note:
- `low` must be stricly less than `high`.
- `dist_spec_args` are `high` and `low`.
- `dtype` must be float type because Uniform distributions are continuous.
-
- Examples:
- >>> # To initialize a Uniform distribution of the lower bound 0.0 and the higher bound 1.0.
- >>> import mindspore.nn.probability.distribution as msd
- >>> u = msd.Uniform(0.0, 1.0, dtype=mstype.float32)
- >>>
- >>> # The following creates two independent Uniform distributions.
- >>> u = msd.Uniform([0.0, 0.0], [1.0, 2.0], dtype=mstype.float32)
- >>>
- >>> # A Uniform distribution can be initilized without arguments.
- >>> # In this case, `high` and `low` must be passed in through arguments during function calls.
- >>> u = msd.Uniform(dtype=mstype.float32)
- >>>
- >>> # To use a Uniform distribution in a network.
- >>> class net(Cell):
- >>> def __init__(self)
- >>> super(net, self).__init__():
- >>> self.u1 = msd.Uniform(0.0, 1.0, dtype=mstype.float32)
- >>> self.u2 = msd.Uniform(dtype=mstype.float32)
- >>>
- >>> # All the following calls in construct are valid.
- >>> def construct(self, value, low_b, high_b, low_a, high_a):
- >>>
- >>> # Private interfaces of probability functions corresponding to public interfaces, including
- >>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, have the same arguments.
- >>> # Args:
- >>> # value (Tensor): the value to be evaluated.
- >>> # low (Tensor): the lower bound of distribution. Default: self.low.
- >>> # high (Tensor): the higher bound of distribution. Default: self.high.
- >>>
- >>> # Examples of `prob`.
- >>> # Similar calls can be made to other probability functions
- >>> # by replacing 'prob' by the name of the function.
- >>> ans = self.u1.prob(value)
- >>> # Evaluate with respect to distribution b.
- >>> ans = self.u1.prob(value, low_b, high_b)
- >>> # `high` and `low` must be passed in during function calls.
- >>> ans = self.u2.prob(value, low_a, high_a)
- >>>
- >>>
- >>> # Functions `mean`, `sd`, `var`, and `entropy` have the same arguments.
- >>> # Args:
- >>> # low (Tensor): the lower bound of distribution. Default: self.low.
- >>> # high (Tensor): the higher bound of distribution. Default: self.high.
- >>>
- >>> # Examples of `mean`. `sd`, `var`, and `entropy` are similar.
- >>> ans = self.u1.mean() # return 0.5
- >>> ans = self.u1.mean(low_b, high_b) # return (low_b + high_b) / 2
- >>> # `high` and `low` must be passed in during function calls.
- >>> ans = self.u2.mean(low_a, high_a)
- >>>
- >>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same.
- >>> # Args:
- >>> # dist (str): the type of the distributions. Should be "Uniform" in this case.
- >>> # low_b (Tensor): the lower bound of distribution b.
- >>> # high_b (Tensor): the upper bound of distribution b.
- >>> # low_a (Tensor): the lower bound of distribution a. Default: self.low.
- >>> # high_a (Tensor): the upper bound of distribution a. Default: self.high.
- >>>
- >>> # Examples of `kl_loss`. `cross_entropy` is similar.
- >>> ans = self.u1.kl_loss('Uniform', low_b, high_b)
- >>> ans = self.u1.kl_loss('Uniform', low_b, high_b, low_a, high_a)
- >>> # Additional `high` and `low` must be passed in.
- >>> ans = self.u2.kl_loss('Uniform', low_b, high_b, low_a, high_a)
- >>>
- >>>
- >>> # Examples of `sample`.
- >>> # Args:
- >>> # shape (tuple): the shape of the sample. Default: ()
- >>> # low (Tensor): the lower bound of the distribution. Default: self.low.
- >>> # high (Tensor): the upper bound of the distribution. Default: self.high.
- >>> ans = self.u1.sample()
- >>> ans = self.u1.sample((2,3))
- >>> ans = self.u1.sample((2,3), low_b, high_b)
- >>> ans = self.u2.sample((2,3), low_a, high_a)
- """
-
- def __init__(self,
- low=None,
- high=None,
- seed=None,
- dtype=mstype.float32,
- name="Uniform"):
- """
- Constructor of Uniform distribution.
- """
- param = dict(locals())
- param['param_dict'] = {'low': low, 'high': high}
- valid_dtype = mstype.float_type
- Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__)
- super(Uniform, self).__init__(seed, dtype, name, param)
-
- self._low = self._add_parameter(low, 'low')
- self._high = self._add_parameter(high, 'high')
- if self.low is not None and self.high is not None:
- check_greater(self.low, self.high, 'low', 'high')
-
-
- # ops needed for the class
- self.exp = exp_generic
- self.log = log_generic
- self.squeeze = P.Squeeze(0)
- self.cast = P.Cast()
- self.const = P.ScalarToArray()
- self.dtypeop = P.DType()
- self.fill = P.Fill()
- self.less = P.Less()
- self.lessequal = P.LessEqual()
- self.logicaland = P.LogicalAnd()
- self.select = P.Select()
- self.shape = P.Shape()
- self.sq = P.Square()
- self.zeroslike = P.ZerosLike()
- self.uniform = C.uniform
-
- def extend_repr(self):
- if self.is_scalar_batch:
- s = f'low = {self.low}, high = {self.high}'
- else:
- s = f'batch_shape = {self._broadcast_shape}'
- return s
-
- @property
- def low(self):
- """
- Return the lower bound of the distribution.
- """
- return self._low
-
- @property
- def high(self):
- """
- Return the upper bound of the distribution.
- """
- return self._high
-
- def _get_dist_type(self):
- return "Uniform"
-
- def _get_dist_args(self, low=None, high=None):
- if low is not None:
- self.checktensor(low, 'low')
- else:
- low = self.low
- if high is not None:
- self.checktensor(high, 'high')
- else:
- high = self.high
- return high, low
-
- def _range(self, low=None, high=None):
- r"""
- Return the range of the distribution.
-
- .. math::
- range(U) = high -low
- """
- low, high = self._check_param_type(low, high)
- return high - low
-
- def _mean(self, low=None, high=None):
- r"""
- .. math::
- MEAN(U) = \frac{low + high}{2}.
- """
- low, high = self._check_param_type(low, high)
- return (low + high) / 2.
-
- def _var(self, low=None, high=None):
- r"""
- .. math::
- VAR(U) = \frac{(high -low) ^ 2}{12}.
- """
- low, high = self._check_param_type(low, high)
- return self.sq(high - low) / 12.0
-
- def _entropy(self, low=None, high=None):
- r"""
- .. math::
- H(U) = \log(high - low).
- """
- low, high = self._check_param_type(low, high)
- return self.log(high - low)
-
- def _cross_entropy(self, dist, low_b, high_b, low=None, high=None):
- """
- Evaluate cross entropy between Uniform distributoins.
-
- Args:
- dist (str): The type of the distributions. Should be "Uniform" in this case.
- low_b (Tensor): The lower bound of distribution b.
- high_b (Tensor): The upper bound of distribution b.
- low_a (Tensor): The lower bound of distribution a. Default: self.low.
- high_a (Tensor): The upper bound of distribution a. Default: self.high.
- """
- check_distribution_name(dist, 'Uniform')
- return self._entropy(low, high) + self._kl_loss(dist, low_b, high_b, low, high)
-
- def _prob(self, value, low=None, high=None):
- r"""
- pdf of Uniform distribution.
-
- Args:
- value (Tensor): The value to be evaluated.
- low (Tensor): The lower bound of the distribution. Default: self.low.
- high (Tensor): The upper bound of the distribution. Default: self.high.
-
- .. math::
- pdf(x) = 0 if x < low;
- pdf(x) = \frac{1.0}{high -low} if low <= x <= high;
- pdf(x) = 0 if x > high;
- """
- value = self._check_value(value, 'value')
- value = self.cast(value, self.dtype)
- low, high = self._check_param_type(low, high)
- neg_ones = self.fill(self.dtype, self.shape(value), -1.0)
- prob = self.exp(neg_ones * self.log(high - low))
- broadcast_shape = self.shape(prob)
- zeros = self.fill(self.dtypeop(prob), broadcast_shape, 0.0)
- comp_lo = self.less(value, low)
- comp_hi = self.lessequal(value, high)
- less_than_low = self.select(comp_lo, zeros, prob)
- return self.select(comp_hi, less_than_low, zeros)
-
- def _kl_loss(self, dist, low_b, high_b, low=None, high=None):
- """
- Evaluate uniform-uniform KL divergence, i.e. KL(a||b).
-
- Args:
- dist (str): The type of the distributions. Should be "Uniform" in this case.
- low_b (Tensor): The lower bound of distribution b.
- high_b (Tensor): The upper bound of distribution b.
- low_a (Tensor): The lower bound of distribution a. Default: self.low.
- high_a (Tensor): The upper bound of distribution a. Default: self.high.
- """
- check_distribution_name(dist, 'Uniform')
- low_b = self._check_value(low_b, 'low_b')
- low_b = self.cast(low_b, self.parameter_type)
- high_b = self._check_value(high_b, 'high_b')
- high_b = self.cast(high_b, self.parameter_type)
- low_a, high_a = self._check_param_type(low, high)
- kl = self.log(high_b - low_b) - self.log(high_a - low_a)
- comp = self.logicaland(self.lessequal(
- low_b, low_a), self.lessequal(high_a, high_b))
- return self.select(comp, kl, self.log(self.zeroslike(kl)))
-
- def _cdf(self, value, low=None, high=None):
- r"""
- The cumulative distribution function of Uniform distribution.
-
- Args:
- value (Tensor): The value to be evaluated.
- low (Tensor): The lower bound of the distribution. Default: self.low.
- high (Tensor): The upper bound of the distribution. Default: self.high.
-
- .. math::
- cdf(x) = 0 if x < low;
- cdf(x) = \frac{x - low}{high -low} if low <= x <= high;
- cdf(x) = 1 if x > high;
- """
- value = self._check_value(value, 'value')
- value = self.cast(value, self.dtype)
- low, high = self._check_param_type(low, high)
- prob = (value - low) / (high - low)
- broadcast_shape = self.shape(prob)
- zeros = self.fill(self.dtypeop(prob), broadcast_shape, 0.0)
- ones = self.fill(self.dtypeop(prob), broadcast_shape, 1.0)
- comp_lo = self.less(value, low)
- comp_hi = self.less(value, high)
- less_than_low = self.select(comp_lo, zeros, prob)
- return self.select(comp_hi, less_than_low, ones)
-
- def _sample(self, shape=(), low=None, high=None):
- """
- Sampling.
-
- Args:
- shape (tuple): The shape of the sample. Default: ().
- low (Tensor): The lower bound of the distribution. Default: self.low.
- high (Tensor): The upper bound of the distribution. Default: self.high.
-
- Returns:
- Tensor, with the shape being shape + batch_shape.
- """
- shape = self.checktuple(shape, 'shape')
- low, high = self._check_param_type(low, high)
- broadcast_shape = self.shape(low + high)
- origin_shape = shape + broadcast_shape
- if origin_shape == ():
- sample_shape = (1,)
- else:
- sample_shape = origin_shape
- l_zero = self.const(0.0)
- h_one = self.const(1.0)
- sample_uniform = self.uniform(sample_shape, l_zero, h_one, self.seed)
- sample = (high - low) * sample_uniform + low
- value = self.cast(sample, self.dtype)
- if origin_shape == ():
- value = self.squeeze(value)
- return value
|