|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Geometric Distribution"""
- import numpy as np
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore._checkparam import Validator
- from mindspore.common import dtype as mstype
- from .distribution import Distribution
- from ._utils.utils import check_prob, check_distribution_name
- from ._utils.custom_ops import exp_generic, log_generic
-
-
- class Geometric(Distribution):
- """
- Geometric Distribution.
- It represents that there are k failures before the first sucess, namely taht there are in total k+1 Bernoulli trails
- when the first success is achieved.
-
- Args:
- probs (float, list, numpy.ndarray, Tensor, Parameter): The probability of success.
- seed (int): The seed used in sampling. Global seed is used if it is None. Default: None.
- dtype (mindspore.dtype): The type of the event samples. Default: mstype.int32.
- name (str): The name of the distribution. Default: 'Geometric'.
-
- Note:
- `probs` must be a proper probability (0 < p < 1).
- `dist_spec_args` is `probs`.
-
- Examples:
- >>> # To initialize a Geometric distribution of the probability 0.5.
- >>> import mindspore.nn.probability.distribution as msd
- >>> n = msd.Geometric(0.5, dtype=mstype.int32)
- >>>
- >>> # The following creates two independent Geometric distributions.
- >>> n = msd.Geometric([0.5, 0.5], dtype=mstype.int32)
- >>>
- >>> # A Geometric distribution can be initilized without arguments.
- >>> # In this case, `probs` must be passed in through arguments during function calls.
- >>> n = msd.Geometric(dtype=mstype.int32)
- >>>
- >>> # To use a Geometric distribution in a network.
- >>> class net(Cell):
- >>> def __init__(self):
- >>> super(net, self).__init__():
- >>> self.g1 = msd.Geometric(0.5, dtype=mstype.int32)
- >>> self.g2 = msd.Geometric(dtype=mstype.int32)
- >>>
- >>> # The following calls are valid in construct.
- >>> def construct(self, value, probs_b, probs_a):
- >>>
- >>> # Private interfaces of probability functions corresponding to public interfaces, including
- >>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, have the same arguments as follows.
- >>> # Args:
- >>> # value (Tensor): the value to be evaluated.
- >>> # probs1 (Tensor): the probability of success of a Bernoulli trail. Default: self.probs.
- >>>
- >>> # Examples of `prob`.
- >>> # Similar calls can be made to other probability functions
- >>> # by replacing `prob` by the name of the function.
- >>> ans = self.g1.prob(value)
- >>> # Evaluate with respect to distribution b.
- >>> ans = self.g1.prob(value, probs_b)
- >>> # `probs` must be passed in during function calls.
- >>> ans = self.g2.prob(value, probs_a)
- >>>
- >>>
- >>> # Functions `mean`, `sd`, `var`, and `entropy` have the same arguments.
- >>> # Args:
- >>> # probs1 (Tensor): the probability of success of a Bernoulli trail. Default: self.probs.
- >>>
- >>> # Examples of `mean`. `sd`, `var`, and `entropy` are similar.
- >>> ans = self.g1.mean() # return 1.0
- >>> ans = self.g1.mean(probs_b)
- >>> # Probs must be passed in during function calls
- >>> ans = self.g2.mean(probs_a)
- >>>
- >>>
- >>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same.
- >>> # Args:
- >>> # dist (str): the name of the distribution. Only 'Geometric' is supported.
- >>> # probs1_b (Tensor): the probability of success of a Bernoulli trail of distribution b.
- >>> # probs1_a (Tensor): the probability of success of a Bernoulli trail of distribution a. Default: self.probs.
- >>>
- >>> # Examples of `kl_loss`. `cross_entropy` is similar.
- >>> ans = self.g1.kl_loss('Geometric', probs_b)
- >>> ans = self.g1.kl_loss('Geometric', probs_b, probs_a)
- >>> # An additional `probs` must be passed in.
- >>> ans = self.g2.kl_loss('Geometric', probs_b, probs_a)
- >>>
- >>>
- >>> # Examples of `sample`.
- >>> # Args:
- >>> # shape (tuple): the shape of the sample. Default: ()
- >>> # probs1 (Tensor): the probability of success of a Bernoulli trail. Default: self.probs.
- >>> ans = self.g1.sample()
- >>> ans = self.g1.sample((2,3))
- >>> ans = self.g1.sample((2,3), probs_b)
- >>> ans = self.g2.sample((2,3), probs_a)
- """
-
- def __init__(self,
- probs=None,
- seed=None,
- dtype=mstype.int32,
- name="Geometric"):
- """
- Constructor of Geometric distribution.
- """
- param = dict(locals())
- param['param_dict'] = {'probs': probs}
- valid_dtype = mstype.int_type + mstype.uint_type + mstype.float_type
- Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__)
- super(Geometric, self).__init__(seed, dtype, name, param)
-
- self._probs = self._add_parameter(probs, 'probs')
- if self._probs is not None:
- check_prob(self.probs)
-
- self.minval = np.finfo(np.float).tiny
-
- # ops needed for the class
- self.exp = exp_generic
- self.log = log_generic
- self.squeeze = P.Squeeze(0)
- self.cast = P.Cast()
- self.const = P.ScalarToArray()
- self.dtypeop = P.DType()
- self.fill = P.Fill()
- self.floor = P.Floor()
- self.issubclass = P.IsSubClass()
- self.less = P.Less()
- self.pow = P.Pow()
- self.select = P.Select()
- self.shape = P.Shape()
- self.sq = P.Square()
- self.uniform = C.uniform
-
- def extend_repr(self):
- if self.is_scalar_batch:
- s = f'probs = {self.probs}'
- else:
- s = f'batch_shape = {self._broadcast_shape}'
- return s
-
- @property
- def probs(self):
- """
- Return the probability of success of the Bernoulli trail.
- """
- return self._probs
-
- def _get_dist_type(self):
- return "Geometric"
-
- def _get_dist_args(self, probs1=None):
- if probs1 is not None:
- self.checktensor(probs1, 'probs')
- else:
- probs1 = self.probs
- return (probs1,)
-
- def _mean(self, probs1=None):
- r"""
- .. math::
- MEAN(Geo) = \fratc{1 - probs1}{probs1}
- """
- probs1 = self._check_param_type(probs1)
- return (1. - probs1) / probs1
-
- def _mode(self, probs1=None):
- r"""
- .. math::
- MODE(Geo) = 0
- """
- probs1 = self._check_param_type(probs1)
- return self.fill(self.dtype, self.shape(probs1), 0.)
-
- def _var(self, probs1=None):
- r"""
- .. math::
- VAR(Geo) = \frac{1 - probs1}{probs1 ^ {2}}
- """
- probs1 = self._check_param_type(probs1)
- return (1.0 - probs1) / self.sq(probs1)
-
- def _entropy(self, probs1=None):
- r"""
- .. math::
- H(Geo) = \frac{-1 * probs0 \log_2 (1-probs0)\ - prob1 * \log_2 (1-probs1)\ }{probs1}
- """
- probs1 = self._check_param_type(probs1)
- probs0 = 1.0 - probs1
- return (-probs0 * self.log(probs0) - probs1 * self.log(probs1)) / probs1
-
- def _cross_entropy(self, dist, probs1_b, probs1=None):
- r"""
- Evaluate cross entropy between Geometric distributions.
-
- Args:
- dist (str): The type of the distributions. Should be "Geometric" in this case.
- probs1_b (Tensor): The probability of success of distribution b.
- probs1_a (Tensor): The probability of success of distribution a. Default: self.probs.
- """
- check_distribution_name(dist, 'Geometric')
- return self._entropy(probs1) + self._kl_loss(dist, probs1_b, probs1)
-
- def _prob(self, value, probs1=None):
- r"""
- Probability mass function of Geometric distributions.
-
- Args:
- value (Tensor): A Tensor composed of only natural numbers.
- probs (Tensor): The probability of success. Default: self.probs.
-
- .. math::
- pmf(k) = probs0 ^k * probs1 if k >= 0;
- pmf(k) = 0 if k < 0.
- """
- value = self._check_value(value, 'value')
- value = self.cast(value, self.parameter_type)
- value = self.floor(value)
- probs1 = self._check_param_type(probs1)
- pmf = self.exp(self.log(1.0 - probs1) * value + self.log(probs1))
- zeros = self.fill(self.dtypeop(pmf), self.shape(pmf), 0.0)
- comp = self.less(value, zeros)
- return self.select(comp, zeros, pmf)
-
- def _cdf(self, value, probs1=None):
- r"""
- Cumulative distribution function (cdf) of Geometric distributions.
-
- Args:
- value (Tensor): A Tensor composed of only natural numbers.
- probs (Tensor): The probability of success. Default: self.probs.
-
- .. math::
- cdf(k) = 1 - probs0 ^ (k+1) if k >= 0;
- cdf(k) = 0 if k < 0.
-
- """
- value = self._check_value(value, 'value')
- value = self.cast(value, self.parameter_type)
- value = self.floor(value)
- probs1 = self._check_param_type(probs1)
- probs0 = 1.0 - probs1
- cdf = 1.0 - self.pow(probs0, value + 1.0)
- zeros = self.fill(self.dtypeop(cdf), self.shape(cdf), 0.0)
- comp = self.less(value, zeros)
- return self.select(comp, zeros, cdf)
-
- def _kl_loss(self, dist, probs1_b, probs1=None):
- r"""
- Evaluate Geometric-Geometric kl divergence, i.e. KL(a||b).
-
- Args:
- dist (str): The type of the distributions. Should be "Geometric" in this case.
- probs1_b (Tensor): The probability of success of distribution b.
- probs1_a (Tensor): The probability of success of distribution a. Default: self.probs.
-
- .. math::
- KL(a||b) = \log(\frac{probs1_a}{probs1_b}) + \frac{probs0_a}{probs1_a} * \log(\frac{probs0_a}{probs0_b})
- """
- check_distribution_name(dist, 'Geometric')
- probs1_b = self._check_value(probs1_b, 'probs1_b')
- probs1_b = self.cast(probs1_b, self.parameter_type)
- probs1_a = self._check_param_type(probs1)
- probs0_a = 1.0 - probs1_a
- probs0_b = 1.0 - probs1_b
- return self.log(probs1_a / probs1_b) + (probs0_a / probs1_a) * self.log(probs0_a / probs0_b)
-
- def _sample(self, shape=(), probs1=None):
- """
- Sampling.
-
- Args:
- shape (tuple): The shape of the sample. Default: ().
- probs (Tensor): The probability of success. Default: self.probs.
-
- Returns:
- Tensor, with the shape being shape + batch_shape.
- """
- shape = self.checktuple(shape, 'shape')
- probs1 = self._check_param_type(probs1)
- origin_shape = shape + self.shape(probs1)
- if origin_shape == ():
- sample_shape = (1,)
- else:
- sample_shape = origin_shape
- minval = self.const(self.minval)
- maxval = self.const(1.0)
- sample_uniform = self.uniform(sample_shape, minval, maxval, self.seed)
- sample = self.floor(self.log(sample_uniform) / self.log(1.0 - probs1))
- value = self.cast(sample, self.dtype)
- if origin_shape == ():
- value = self.squeeze(value)
- return value
|