|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Tensor implementation."""
- import numpy as np
-
- from mindspore import log as logger
- from mindspore.communication.management import get_rank, get_group_size
- from .._c_expression import Tensor as Tensor_
- from .._c_expression import MetaTensor as MetaTensor_
- from .._checkparam import Validator as validator
- from . import dtype as mstype
- from ._register_for_tensor import tensor_operator_registry
-
- __all__ = ['Tensor', 'MetaTensor', 'RowTensor', 'SparseTensor']
- np_types = (np.int8, np.int16, np.int32, np.int64,
- np.uint8, np.uint16, np.uint32, np.uint64, np.float16,
- np.float32, np.float64, np.bool_)
-
-
- class Tensor(Tensor_):
- """
- Tensor is used for data storage.
-
- Tensor inherits tensor object in C++.
- Some functions are implemented in C++ and some functions are implemented in Python.
-
- Args:
- input_data (Tensor, float, int, bool, tuple, list, numpy.ndarray): Input data of the tensor.
- dtype (:class:`mindspore.dtype`): Input data should be None, bool or numeric type defined in `mindspore.dtype`.
- The argument is used to define the data type of the output tensor. If it is None, the data type of the
- output tensor will be as same as the `input_data`. Default: None.
-
- Outputs:
- Tensor, with the same shape as `input_data`.
-
- Examples:
- >>> # initialize a tensor with input data
- >>> t1 = Tensor(np.zeros([1, 2, 3]), mindspore.float32)
- >>> assert isinstance(t1, Tensor)
- >>> assert t1.shape == (1, 2, 3)
- >>> assert t1.dtype == mindspore.float32
- >>>
- >>> # initialize a tensor with a float scalar
- >>> t2 = Tensor(0.1)
- >>> assert isinstance(t2, Tensor)
- >>> assert t2.dtype == mindspore.float64
- """
-
- def __init__(self, input_data, dtype=None):
- # If input data is numpy number, convert it to np array
- if isinstance(input_data, np_types):
- input_data = np.array(input_data)
-
- # If input_data is tuple/list/numpy.ndarray, it's support in check_type method.
- validator.check_value_type('input_data', input_data, (Tensor_, np.ndarray, list, tuple, float, int, bool),
- 'Tensor')
- valid_dtypes = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64,
- np.float16, np.float32, np.float64, np.bool_)
- if isinstance(input_data, np.ndarray) and input_data.dtype not in valid_dtypes:
- raise TypeError(f"For Tensor, the input_data is a numpy array whose data type is "
- f"{input_data.dtype} that is not supported to initialize a Tensor.")
- if isinstance(input_data, (tuple, list)):
- if np.array(input_data).dtype not in valid_dtypes:
- raise TypeError(f"For Tensor, the input_data is {input_data} that contain unsupported element.")
- if dtype is not None:
- validator.check_type_name('dtype', dtype, mstype.number_type + (mstype.bool_,), "Tensor")
-
- if isinstance(input_data, np.ndarray) and (not input_data.flags['FORC']):
- input_data = np.ascontiguousarray(input_data)
- if dtype is None:
- Tensor_.__init__(self, input_data)
- else:
- Tensor_.__init__(self, input_data, dtype)
- self._virtual_flag = False
-
- def __repr__(self):
- return Tensor_.__repr__(self)
-
- def __add__(self, other):
- out = tensor_operator_registry.get('__add__')(self, other)
- return out
-
- def __eq__(self, other):
- if not isinstance(other, (int, float, Tensor)):
- return False
- # bool type is not supported for `Equal` operator in backend.
- if self.dtype == mstype.bool_ or (isinstance(other, Tensor) and other.dtype == mstype.bool_):
- if isinstance(other, Tensor):
- return Tensor(np.array(self.asnumpy() == other.asnumpy()))
- return Tensor(np.array(self.asnumpy() == other))
- return tensor_operator_registry.get('__eq__')(self, other)
-
- def __ne__(self, other):
- if not isinstance(other, (int, float, Tensor)):
- return True
- # bool type is not supported for `NotEqual` operator in backend.
- if self.dtype == mstype.bool_ or (isinstance(other, Tensor) and other.dtype == mstype.bool_):
- return Tensor(np.array(self.asnumpy() != other.asnumpy()))
- return tensor_operator_registry.get('__ne__')(self, other)
-
- def __hash__(self):
- return hash(id(self))
-
- def __mul__(self, other):
- out = tensor_operator_registry.get('__mul__')(self, other)
- return out
-
- def __neg__(self):
- out = tensor_operator_registry.get('__neg__')(self)
- return out
-
- def __bool__(self):
- data = self.asnumpy()
- if data.shape == ():
- return bool(data)
- if data.shape == (1,):
- return bool(data[0])
- raise ValueError("The truth value of an array with several elements is ambiguous.")
-
- def __pos__(self):
- return self
-
- def __iadd__(self, other):
- return self.__add__(other)
-
- def __radd__(self, other):
- out = tensor_operator_registry.get('__add__')(self, other)
- return out
-
- def __imul__(self, other):
- return self.__mul__(other)
-
- def __rmul__(self, other):
- out = tensor_operator_registry.get('__mul__')(self, other)
- return out
-
- def __truediv__(self, other):
- out = tensor_operator_registry.get('__truediv__')(self, other)
- return out
-
- def __rtruediv__(self, other):
- out = tensor_operator_registry.get('__truediv__')(other, self)
- return out
-
- def __sub__(self, other):
- out = tensor_operator_registry.get('__sub__')(self, other)
- return out
-
- def __isub__(self, other):
- return self.__sub__(other)
-
- def __rsub__(self, other):
- out = tensor_operator_registry.get('__sub__')(other, self)
- return out
-
- def __lt__(self, other):
- out = tensor_operator_registry.get('__lt__')(self, other)
- return out
-
- def __le__(self, other):
- out = tensor_operator_registry.get('__le__')(self, other)
- return out
-
- def __getitem__(self, index):
- out = tensor_operator_registry.get('__getitem__')(self, index)
- return out
-
- def __setitem__(self, index, value):
- out = tensor_operator_registry.get('__setitem__')(self, index, value)
- self.assign_value(out)
- return self
-
- def __gt__(self, other):
- out = tensor_operator_registry.get('__gt__')(self, other)
- return out
-
- def __ge__(self, other):
- out = tensor_operator_registry.get('__ge__')(self, other)
- return out
-
- def __len__(self):
- out = tensor_operator_registry.get('shape')(self)
- if not out:
- return 1
- return out[0]
-
- def __mod__(self, other):
- return tensor_operator_registry.get('__mod__')(self, other)
-
- def __imod__(self, other):
- return self.__mod__(other)
-
- def __rmod__(self, other):
- return tensor_operator_registry.get('__mod__')(other, self)
-
- def __pow__(self, other):
- return tensor_operator_registry.get('__pow__')(self, other)
-
- def __floordiv__(self, other):
- return tensor_operator_registry.get('__floordiv__')(self, other)
-
- def __ifloordiv__(self, other):
- return self.__floordiv__(other)
-
- def __rfloordiv__(self, other):
- return tensor_operator_registry.get('__floordiv__')(other, self)
-
- def __str__(self):
- if self.dtype == mstype.type_none:
- return "Unknown Tensor type!"
- return str(self.asnumpy())
-
- @property
- def shape(self):
- """The shape of tensor is a tuple."""
- return self._shape
-
- @property
- def dtype(self):
- """The dtype of tensor is a mindspore type."""
- return self._dtype
-
- @property
- def virtual_flag(self):
- """Mark tensor is virtual."""
- return self._virtual_flag
-
- @virtual_flag.setter
- def virtual_flag(self, value):
- """The setter of virtual_flag."""
- if not isinstance(value, bool):
- raise TypeError("virtual_flag must be bool.")
- self._virtual_flag = value
-
- @staticmethod
- def from_numpy(array):
- """Convert numpy array to Tensor without copy data."""
- return Tensor(Tensor_.from_numpy(array))
-
- def asnumpy(self):
- """Convert tensor to numpy array."""
- return Tensor_.asnumpy(self)
-
- def all(self, axis=(), keep_dims=False):
- """
- Check all array elements along a given axis evaluate to True.
-
- Args:
- axis (Union[None, int, tuple(int)): Dimensions of reduction,
- when axis is None or empty tuple, reduce all dimensions.
- Default: (), reduce all dimensions.
- keep_dims (bool): Whether to keep the reduced dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Returns:
- Tensor, has the same data type as x.
- """
-
- if axis is None:
- axis = ()
- return tensor_operator_registry.get('all')(keep_dims)(self, axis)
-
- def any(self, axis=(), keep_dims=False):
- """
- Check any array element along a given axis evaluate to True.
-
- Args:
- axis (Union[None, int, tuple(int)): Dimensions of reduction,
- when axis is None or empty tuple, reduce all dimensions.
- Default: (), reduce all dimensions.
- keep_dims (bool): Whether to keep the reduced dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Returns:
- Tensor, has the same data type as x.
- """
-
- if axis is None:
- axis = ()
- return tensor_operator_registry.get('any')(keep_dims)(self, axis)
-
-
- class RowTensor:
- """
- A sparse representation of a set of tensor slices at given indices.
-
- An RowTensor is typically used to represent a subset of a larger
- tensor dense of shape [L0, D1, .. , DN] where L0 >> D0.
-
- The values in indices are the indices in the first dimension of the slices
- that have been extracted from the larger tensor.
-
- The dense tensor dense represented by an RowTensor slices has
- `dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]`.
-
- RowTensor can only be used in the `Cell`'s construct method.
-
- It is not supported in pynative mode at the moment.
-
- Args:
- indices (Tensor): A 1-D integer Tensor of shape [D0].
- values (Tensor): A Tensor of any dtype of shape [D0, D1, ..., Dn].
- dense_shape (tuple): An integer tuple which contains the shape
- of the corresponding dense tensor.
-
- Returns:
- RowTensor, composed of `indices`, `values`, and `dense_shape`.
-
- Examples:
- >>> class Net(nn.Cell):
- >>> def __init__(self, dense_shape):
- >>> super(Net, self).__init__()
- >>> self.dense_shape = dense_shape
- >>> def construct(self, indices, values):
- >>> x = RowTensor(indices, values, self.dense_shape)
- >>> return x.values, x.indices, x.dense_shape
- >>>
- >>> indices = Tensor([0])
- >>> values = Tensor([[1, 2]], dtype=ms.float32)
- >>> Net((3, 2))(indices, values)
- """
-
- def __init__(self, indices, values, dense_shape):
- "Init RowTensor"
- self.__indices = indices
- self.__values = values
- self.__dense_shape = dense_shape
-
- @property
- def indices(self):
- return self.__indices
-
- @property
- def values(self):
- return self.__values
-
- @property
- def dense_shape(self):
- return self.__dense_shape
-
-
- class SparseTensor:
- """
- A sparse representation of a set of nonzero elememts from a tensor at given indices.
-
- SparseTensor can only be used in the `Cell`'s construct method.
-
- Pynative mode not supported at the moment.
-
- For a tensor dense, its SparseTensor(indices, values, dense_shape) has
- `dense[indices[i]] = values[i]`.
-
- Args:
- indices (Tensor): A 2-D integer Tensor of shape `[N, ndims]`,
- where N and ndims are the number of values and number of dimensions in
- the SparseTensor, respectively.
- values (Tensor): A 1-D tensor of any type and shape `[N]`, which
- supplies the values for each element in indices.
- dense_shape (tuple): A integer tuple of size `ndims`,
- which specifies the dense_shape of the sparse tensor.
-
- Returns:
- SparseTensor, composed of `indices`, `values`, and `dense_shape`.
-
- Examples:
- >>> class Net(nn.Cell):
- >>> def __init__(self, dense_shape):
- >>> super(Net, self).__init__()
- >>> self.dense_shape = dense_shape
- >>> def construct(self, indices, values):
- >>> x = SparseTensor(indices, values, self.dense_shape)
- >>> return x.values, x.indices, x.dense_shape
- >>>
- >>> indices = Tensor([[0, 1], [1, 2]])
- >>> values = Tensor([1, 2], dtype=ms.float32)
- >>> Net((3, 4))(indices, values)
- """
-
- def __init__(self, indices, values, dense_shape):
- "Init SparseTensor"
- self.__indices = indices
- self.__values = values
- self.__dense_shape = dense_shape
-
- @property
- def indices(self):
- return self.__indices
-
- @property
- def values(self):
- return self.__values
-
- @property
- def dense_shape(self):
- return self.__dense_shape
-
-
- class MetaTensor(MetaTensor_):
- """
- The base class of the MetaTensor.
- Initialization of tensor basic attributes and model weight values.
-
- Returns:
- Array, an array after being initialized.
- """
-
- def __init__(self, dtype, shape, init=None):
- # check param
- self.init = init
- MetaTensor_.__init__(self, dtype, shape)
-
- def to_tensor(self, slice_index=None, shape=None, opt_shard_group=None):
- """
- Get the tensor format data of this MetaTensor.
-
- Args:
- slice_index (int): Slice index of a parameter's slices.
- It is used when initialize a slice of a parameter, it guarantees that devices
- using the same slice can generate the same tensor.
- shape (list[int]): Shape of the slice, it is used when initialize a slice of the parameter.
- opt_shard_group(str): Optimizer shard group which is used in auto or semi auto parallel mode
- to get one shard of a parameter's slice.
- """
- if self.init is None:
- raise TypeError("to_dense must be set MetaTensor.init, init can't be None")
-
- if shape is None:
- shape = self.shape
-
- try:
- arr = np.ndarray(shape, dtype=mstype.dtype_to_nptype(self.dtype))
- except ValueError:
- msg = "Error shape={}".format(shape)
- logger.error(msg)
- raise ValueError(msg)
-
- class seed_context:
- '''set and restore seed'''
-
- def __init__(self, init):
- self.init = init
- from .seed import get_seed
- global_seed = get_seed()
- self._np_seed = np.random.get_state()[1][0]
- self.need_set_seed = ((slice_index is not None) and (global_seed is None))
-
- def __enter__(self):
- if self.need_set_seed:
- self.seed = self.init.seed
- np.random.seed(slice_index)
- self.init.seed = slice_index
-
- def __exit__(self, ptype, value, trace):
- if self.need_set_seed:
- np.random.seed(self._np_seed)
- self.init.seed = self.seed
-
- with seed_context(self.init):
- self.init(arr)
- data = np.array(arr)
- if opt_shard_group:
- rank = get_rank(opt_shard_group)
- size = get_group_size(opt_shard_group)
- data = np.split(data, size)[rank]
- return Tensor(data, dtype=self.dtype)
-
-
- def _vm_compare(*args):
- """Implement `vm_compare` for tensor."""
- obj_str = args[-1]
- if obj_str == "shape":
- fn = getattr(args[0].asnumpy(), obj_str)
- return fn
- if len(args) == 2:
- fn = getattr(args[0].asnumpy(), obj_str)
- return Tensor(fn())
- if isinstance(args[0], Tensor):
- fn = getattr(args[0].asnumpy(), obj_str)
- y = args[1].asnumpy() if isinstance(args[1], Tensor) else args[1]
- else:
- obj_str = "__r" + obj_str[2:]
- fn = getattr(args[1].asnumpy(), obj_str)
- y = args[0]
- return Tensor(np.array(fn(y)))
-
-
- tensor_operator_registry.register('vm_compare', _vm_compare)
|