|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing soft dvpp SoftDvppDecodeResizeJpeg and SoftDvppDecodeRandomCropResizeJpeg in DE
- """
- import mindspore.dataset as ds
- import mindspore.dataset.vision.c_transforms as vision
- from mindspore import log as logger
- from util import diff_mse, visualize_image
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_soft_dvpp_decode_resize_jpeg(plot=False):
- """
- Test SoftDvppDecodeResizeJpeg op
- """
- logger.info("test_random_decode_resize_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- resize_op = vision.Resize((256, 512))
- data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"])
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg((256, 512))
- data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"])
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
- data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
- if num_iter > 0:
- break
- image1 = item1["image"]
- image2 = item2["image"]
- mse = diff_mse(image1, image2)
- assert mse <= 0.02
- logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
- if plot:
- visualize_image(image1, image2, mse)
- num_iter += 1
-
-
- def test_soft_dvpp_decode_random_crop_resize_jpeg(plot=False):
- """
- Test SoftDvppDecodeRandomCropResizeJpeg op
- """
- logger.info("test_random_decode_resize_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- random_crop_decode_resize_op = vision.RandomCropDecodeResize((256, 512), (1, 1), (0.5, 0.5))
- data1 = data1.map(operations=random_crop_decode_resize_op, input_columns=["image"])
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- soft_dvpp_random_crop_decode_resize_op = vision.SoftDvppDecodeRandomCropResizeJpeg((256, 512), (1, 1), (0.5, 0.5))
- data2 = data2.map(operations=soft_dvpp_random_crop_decode_resize_op, input_columns=["image"])
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
- data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
- if num_iter > 0:
- break
- image1 = item1["image"]
- image2 = item2["image"]
- mse = diff_mse(image1, image2)
- assert mse <= 0.06
- logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
- if plot:
- visualize_image(image1, image2, mse)
- num_iter += 1
-
-
- def test_soft_dvpp_decode_resize_jpeg_supplement(plot=False):
- """
- Test SoftDvppDecodeResizeJpeg op
- """
- logger.info("test_random_decode_resize_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- resize_op = vision.Resize(1134)
- data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"])
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg(1134)
- data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"])
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
- data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
- if num_iter > 0:
- break
- image1 = item1["image"]
- image2 = item2["image"]
- mse = diff_mse(image1, image2)
- assert mse <= 0.02
- logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
- if plot:
- visualize_image(image1, image2, mse)
- num_iter += 1
-
-
- if __name__ == "__main__":
- test_soft_dvpp_decode_resize_jpeg(plot=True)
- test_soft_dvpp_decode_random_crop_resize_jpeg(plot=True)
- test_soft_dvpp_decode_resize_jpeg_supplement(plot=True)
|