|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing profiling support in DE
- """
- import json
- import os
- import numpy as np
- import mindspore.dataset as ds
-
- FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
- DATASET_ROOT = "../data/dataset/testTFTestAllTypes/"
- SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
-
- PIPELINE_FILE = "./pipeline_profiling_1.json"
- DATASET_ITERATOR_FILE = "./dataset_iterator_profiling_1.txt"
-
-
- def test_profiling_simple_pipeline():
- """
- Generator -> Shuffle -> Batch
- """
- os.environ['PROFILING_MODE'] = 'true'
- os.environ['MINDDATA_PROFILING_DIR'] = '.'
- os.environ['DEVICE_ID'] = '1'
-
- source = [(np.array([x]),) for x in range(1024)]
- data1 = ds.GeneratorDataset(source, ["data"])
- data1 = data1.shuffle(64)
- data1 = data1.batch(32)
- # try output shape type and dataset size and make sure no profiling file is generated
- assert data1.output_shapes() == [[32, 1]]
- assert [str(tp) for tp in data1.output_types()] == ["int64"]
- assert data1.get_dataset_size() == 32
- assert os.path.exists(PIPELINE_FILE) is False
- assert os.path.exists(DATASET_ITERATOR_FILE) is False
-
- for _ in data1:
- pass
-
- assert os.path.exists(PIPELINE_FILE) is True
- os.remove(PIPELINE_FILE)
- assert os.path.exists(DATASET_ITERATOR_FILE) is True
- os.remove(DATASET_ITERATOR_FILE)
- del os.environ['PROFILING_MODE']
- del os.environ['MINDDATA_PROFILING_DIR']
-
-
- def test_profiling_complex_pipeline():
- """
- Generator -> Map ->
- -> Zip
- TFReader -> Shuffle ->
- """
- os.environ['PROFILING_MODE'] = 'true'
- os.environ['MINDDATA_PROFILING_DIR'] = '.'
- os.environ['DEVICE_ID'] = '1'
-
- source = [(np.array([x]),) for x in range(1024)]
- data1 = ds.GeneratorDataset(source, ["gen"])
- data1 = data1.map(operations=[(lambda x: x + 1)], input_columns=["gen"])
-
- pattern = DATASET_ROOT + "/test.data"
- data2 = ds.TFRecordDataset(pattern, SCHEMA_FILE, shuffle=ds.Shuffle.FILES)
- data2 = data2.shuffle(4)
-
- data3 = ds.zip((data1, data2))
-
- for _ in data3:
- pass
-
- with open(PIPELINE_FILE) as f:
- data = json.load(f)
- op_info = data["op_info"]
- assert len(op_info) == 5
- for i in range(4):
- assert "size" in op_info[i]["metrics"]["output_queue"]
- assert "length" in op_info[i]["metrics"]["output_queue"]
- assert "throughput" in op_info[i]["metrics"]["output_queue"]
-
- assert os.path.exists(PIPELINE_FILE) is True
- os.remove(PIPELINE_FILE)
- assert os.path.exists(DATASET_ITERATOR_FILE) is True
- os.remove(DATASET_ITERATOR_FILE)
- del os.environ['PROFILING_MODE']
- del os.environ['MINDDATA_PROFILING_DIR']
-
-
- def test_profiling_sampling_interval():
- """
- Test non-default monitor sampling interval
- """
- os.environ['PROFILING_MODE'] = 'true'
- os.environ['MINDDATA_PROFILING_DIR'] = '.'
- os.environ['DEVICE_ID'] = '1'
- interval_origin = ds.config.get_monitor_sampling_interval()
-
- ds.config.set_monitor_sampling_interval(30)
- interval = ds.config.get_monitor_sampling_interval()
- assert interval == 30
-
- source = [(np.array([x]),) for x in range(1024)]
- data1 = ds.GeneratorDataset(source, ["data"])
- data1 = data1.shuffle(64)
- data1 = data1.batch(32)
-
- for _ in data1:
- pass
-
- assert os.path.exists(PIPELINE_FILE) is True
- os.remove(PIPELINE_FILE)
- assert os.path.exists(DATASET_ITERATOR_FILE) is True
- os.remove(DATASET_ITERATOR_FILE)
-
- ds.config.set_monitor_sampling_interval(interval_origin)
- del os.environ['PROFILING_MODE']
- del os.environ['MINDDATA_PROFILING_DIR']
-
-
- if __name__ == "__main__":
- test_profiling_simple_pipeline()
- test_profiling_complex_pipeline()
- test_profiling_sampling_interval()
|