|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- import numpy as np
-
- import mindspore.dataset as ds
- import mindspore.dataset.text as text
-
- # this file contains "home is behind the world head" each word is 1 line
- DATA_FILE = "../data/dataset/testVocab/words.txt"
- VOCAB_FILE = "../data/dataset/testVocab/vocab_list.txt"
- HMM_FILE = "../data/dataset/jiebadict/hmm_model.utf8"
- MP_FILE = "../data/dataset/jiebadict/jieba.dict.utf8"
-
-
- def test_on_tokenized_line():
- data = ds.TextFileDataset("../data/dataset/testVocab/lines.txt", shuffle=False)
- jieba_op = text.JiebaTokenizer(HMM_FILE, MP_FILE, mode=text.JiebaMode.MP)
- with open(VOCAB_FILE, 'r') as f:
- for line in f:
- word = line.split(',')[0]
- jieba_op.add_word(word)
- data = data.map(operations=jieba_op, input_columns=["text"])
- vocab = text.Vocab.from_file(VOCAB_FILE, ",", special_tokens=["<pad>", "<unk>"])
- lookup = text.Lookup(vocab, "<unk>")
- data = data.map(operations=lookup, input_columns=["text"])
- res = np.array([[10, 1, 11, 1, 12, 1, 15, 1, 13, 1, 14],
- [11, 1, 12, 1, 10, 1, 14, 1, 13, 1, 15]], dtype=np.int32)
- for i, d in enumerate(data.create_dict_iterator(num_epochs=1, output_numpy=True)):
- np.testing.assert_array_equal(d["text"], res[i])
-
-
- def test_on_tokenized_line_with_no_special_tokens():
- data = ds.TextFileDataset("../data/dataset/testVocab/lines.txt", shuffle=False)
- jieba_op = text.JiebaTokenizer(HMM_FILE, MP_FILE, mode=text.JiebaMode.MP)
- with open(VOCAB_FILE, 'r') as f:
- for line in f:
- word = line.split(',')[0]
- jieba_op.add_word(word)
-
- data = data.map(operations=jieba_op, input_columns=["text"])
- vocab = text.Vocab.from_file(VOCAB_FILE, ",")
- lookup = text.Lookup(vocab, "not")
- data = data.map(operations=lookup, input_columns=["text"])
- res = np.array([[8, 0, 9, 0, 10, 0, 13, 0, 11, 0, 12],
- [9, 0, 10, 0, 8, 0, 12, 0, 11, 0, 13]], dtype=np.int32)
- for i, d in enumerate(data.create_dict_iterator(num_epochs=1, output_numpy=True)):
- np.testing.assert_array_equal(d["text"], res[i])
-
-
- if __name__ == '__main__':
- test_on_tokenized_line()
- test_on_tokenized_line_with_no_special_tokens()
|