|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing the MixUpBatch op in DE
- """
- import numpy as np
- import pytest
- import mindspore.dataset as ds
- import mindspore.dataset.vision.c_transforms as vision
- import mindspore.dataset.transforms.c_transforms as data_trans
- from mindspore import log as logger
- from util import save_and_check_md5, diff_mse, visualize_list, config_get_set_seed, \
- config_get_set_num_parallel_workers
-
- DATA_DIR = "../data/dataset/testCifar10Data"
- DATA_DIR2 = "../data/dataset/testImageNetData2/train/"
- DATA_DIR3 = "../data/dataset/testCelebAData/"
-
- GENERATE_GOLDEN = False
-
-
- def test_mixup_batch_success1(plot=False):
- """
- Test MixUpBatch op with specified alpha parameter
- """
- logger.info("test_mixup_batch_success1")
-
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5, drop_remainder=True)
-
- images_original = None
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
- mixup_batch_op = vision.MixUpBatch(2)
- data1 = data1.batch(5, drop_remainder=True)
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "label"])
-
- images_mixup = None
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- if plot:
- visualize_list(images_original, images_mixup)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_mixup[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
-
- def test_mixup_batch_success2(plot=False):
- """
- Test MixUpBatch op with specified alpha parameter on ImageFolderDataset
- """
- logger.info("test_mixup_batch_success2")
-
- # Original Images
- ds_original = ds.ImageFolderDataset(dataset_dir=DATA_DIR2, shuffle=False)
- decode_op = vision.Decode()
- ds_original = ds_original.map(operations=[decode_op], input_columns=["image"])
- ds_original = ds_original.batch(4, pad_info={}, drop_remainder=True)
-
- images_original = None
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.ImageFolderDataset(dataset_dir=DATA_DIR2, shuffle=False)
-
- decode_op = vision.Decode()
- data1 = data1.map(operations=[decode_op], input_columns=["image"])
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
-
- mixup_batch_op = vision.MixUpBatch(2.0)
- data1 = data1.batch(4, pad_info={}, drop_remainder=True)
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "label"])
-
- images_mixup = None
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- if plot:
- visualize_list(images_original, images_mixup)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_mixup[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
-
- def test_mixup_batch_success3(plot=False):
- """
- Test MixUpBatch op without specified alpha parameter.
- Alpha parameter will be selected by default in this case
- """
- logger.info("test_mixup_batch_success3")
-
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5, drop_remainder=True)
-
- images_original = None
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
- mixup_batch_op = vision.MixUpBatch()
- data1 = data1.batch(5, drop_remainder=True)
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "label"])
-
- images_mixup = np.array([])
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- if plot:
- visualize_list(images_original, images_mixup)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_mixup[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
-
- def test_mixup_batch_success4(plot=False):
- """
- Test MixUpBatch op on a dataset where OneHot returns a 2D vector.
- Alpha parameter will be selected by default in this case
- """
- logger.info("test_mixup_batch_success4")
-
- # Original Images
- ds_original = ds.CelebADataset(DATA_DIR3, shuffle=False)
- decode_op = vision.Decode()
- ds_original = ds_original.map(operations=[decode_op], input_columns=["image"])
- ds_original = ds_original.batch(2, drop_remainder=True)
-
- images_original = None
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.CelebADataset(DATA_DIR3, shuffle=False)
-
- decode_op = vision.Decode()
- data1 = data1.map(operations=[decode_op], input_columns=["image"])
-
- one_hot_op = data_trans.OneHot(num_classes=100)
- data1 = data1.map(operations=one_hot_op, input_columns=["attr"])
-
- mixup_batch_op = vision.MixUpBatch()
- data1 = data1.batch(2, drop_remainder=True)
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "attr"])
-
- images_mixup = np.array([])
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- if plot:
- visualize_list(images_original, images_mixup)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_mixup[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
-
- def test_mixup_batch_md5():
- """
- Test MixUpBatch with MD5:
- """
- logger.info("test_mixup_batch_md5")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # MixUp Images
- data = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data = data.map(operations=one_hot_op, input_columns=["label"])
- mixup_batch_op = vision.MixUpBatch()
- data = data.batch(5, drop_remainder=True)
- data = data.map(operations=mixup_batch_op, input_columns=["image", "label"])
-
- filename = "mixup_batch_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
-
- def test_mixup_batch_fail1():
- """
- Test MixUpBatch Fail 1
- We expect this to fail because the images and labels are not batched
- """
- logger.info("test_mixup_batch_fail1")
-
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5)
-
- images_original = np.array([])
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
- mixup_batch_op = vision.MixUpBatch(0.1)
- with pytest.raises(RuntimeError) as error:
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "label"])
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- error_message = "You must make sure images are HWC or CHW and batched"
- assert error_message in str(error.value)
-
-
- def test_mixup_batch_fail2():
- """
- Test MixUpBatch Fail 2
- We expect this to fail because alpha is negative
- """
- logger.info("test_mixup_batch_fail2")
-
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5)
-
- images_original = np.array([])
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
- with pytest.raises(ValueError) as error:
- vision.MixUpBatch(-1)
- error_message = "Input is not within the required interval"
- assert error_message in str(error.value)
-
-
- def test_mixup_batch_fail3():
- """
- Test MixUpBatch op
- We expect this to fail because label column is not passed to mixup_batch
- """
- logger.info("test_mixup_batch_fail3")
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5, drop_remainder=True)
-
- images_original = None
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
- mixup_batch_op = vision.MixUpBatch()
- data1 = data1.batch(5, drop_remainder=True)
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image"])
-
- with pytest.raises(RuntimeError) as error:
- images_mixup = np.array([])
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- error_message = "input lack of images or labels"
- assert error_message in str(error.value)
-
-
- def test_mixup_batch_fail4():
- """
- Test MixUpBatch Fail 2
- We expect this to fail because alpha is zero
- """
- logger.info("test_mixup_batch_fail4")
-
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5)
-
- images_original = np.array([])
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- one_hot_op = data_trans.OneHot(num_classes=10)
- data1 = data1.map(operations=one_hot_op, input_columns=["label"])
- with pytest.raises(ValueError) as error:
- vision.MixUpBatch(0.0)
- error_message = "Input is not within the required interval"
- assert error_message in str(error.value)
-
-
- def test_mixup_batch_fail5():
- """
- Test MixUpBatch Fail 5
- We expect this to fail because labels are not OntHot encoded
- """
- logger.info("test_mixup_batch_fail5")
-
- # Original Images
- ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
- ds_original = ds_original.batch(5)
-
- images_original = np.array([])
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image.asnumpy()
- else:
- images_original = np.append(images_original, image.asnumpy(), axis=0)
-
- # MixUp Images
- data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
-
- mixup_batch_op = vision.MixUpBatch()
- data1 = data1.batch(5, drop_remainder=True)
- data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "label"])
-
- with pytest.raises(RuntimeError) as error:
- images_mixup = np.array([])
- for idx, (image, _) in enumerate(data1):
- if idx == 0:
- images_mixup = image.asnumpy()
- else:
- images_mixup = np.append(images_mixup, image.asnumpy(), axis=0)
- error_message = "wrong labels shape. The second column (labels) must have a shape of NC or NLC"
- assert error_message in str(error.value)
-
-
- if __name__ == "__main__":
- test_mixup_batch_success1(plot=True)
- test_mixup_batch_success2(plot=True)
- test_mixup_batch_success3(plot=True)
- test_mixup_batch_success4(plot=True)
- test_mixup_batch_md5()
- test_mixup_batch_fail1()
- test_mixup_batch_fail2()
- test_mixup_batch_fail3()
- test_mixup_batch_fail4()
- test_mixup_batch_fail5()
|