|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- import os
- import random
- import time
- from multiprocessing import Process
- import numpy as np
- import mindspore.dataset as ds
- from mindspore import log as logger
- from mindspore.dataset.engine import SamplingStrategy
-
- DATASET_FILE = "../data/mindrecord/testGraphData/testdata"
-
-
- def graphdata_startserver(server_port):
- """
- start graphdata server
- """
- logger.info('test start server.\n')
- ds.GraphData(DATASET_FILE, 1, 'server', port=server_port)
-
-
- class RandomBatchedSampler(ds.Sampler):
- # RandomBatchedSampler generate random sequence without replacement in a batched manner
- def __init__(self, index_range, num_edges_per_sample):
- super().__init__()
- self.index_range = index_range
- self.num_edges_per_sample = num_edges_per_sample
-
- def __iter__(self):
- indices = [i+1 for i in range(self.index_range)]
- # Reset random seed here if necessary
- # random.seed(0)
- random.shuffle(indices)
- for i in range(0, self.index_range, self.num_edges_per_sample):
- # Drop reminder
- if i + self.num_edges_per_sample <= self.index_range:
- yield indices[i: i + self.num_edges_per_sample]
-
-
- class GNNGraphDataset():
- def __init__(self, g, batch_num):
- self.g = g
- self.batch_num = batch_num
-
- def __len__(self):
- # Total sample size of GNN dataset
- # In this case, the size should be total_num_edges/num_edges_per_sample
- return self.g.graph_info()['edge_num'][0] // self.batch_num
-
- def __getitem__(self, index):
- # index will be a list of indices yielded from RandomBatchedSampler
- # Fetch edges/nodes/samples/features based on indices
- nodes = self.g.get_nodes_from_edges(index.astype(np.int32))
- nodes = nodes[:, 0]
- neg_nodes = self.g.get_neg_sampled_neighbors(
- node_list=nodes, neg_neighbor_num=3, neg_neighbor_type=1)
- nodes_neighbors = self.g.get_sampled_neighbors(node_list=nodes, neighbor_nums=[
- 2, 2], neighbor_types=[2, 1], strategy=SamplingStrategy.RANDOM)
- neg_nodes_neighbors = self.g.get_sampled_neighbors(node_list=neg_nodes[:, 1:].reshape(-1), neighbor_nums=[2, 2],
- neighbor_types=[2, 1], strategy=SamplingStrategy.EDGE_WEIGHT)
- nodes_neighbors_features = self.g.get_node_feature(
- node_list=nodes_neighbors, feature_types=[2, 3])
- neg_neighbors_features = self.g.get_node_feature(
- node_list=neg_nodes_neighbors, feature_types=[2, 3])
- return nodes_neighbors, neg_nodes_neighbors, nodes_neighbors_features[0], neg_neighbors_features[1]
-
-
- def test_graphdata_distributed():
- """
- Test distributed
- """
- ASAN = os.environ.get('ASAN_OPTIONS')
- if ASAN:
- logger.info("skip the graphdata distributed when asan mode")
- return
-
- logger.info('test distributed.\n')
-
- server_port = random.randint(10000, 60000)
-
- p1 = Process(target=graphdata_startserver, args=(server_port,))
- p1.start()
- time.sleep(5)
-
- g = ds.GraphData(DATASET_FILE, 1, 'client', port=server_port)
- nodes = g.get_all_nodes(1)
- assert nodes.tolist() == [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
- row_tensor = g.get_node_feature(nodes.tolist(), [1, 2, 3])
- assert row_tensor[0].tolist() == [[0, 1, 0, 0, 0], [1, 0, 0, 0, 1], [0, 0, 1, 1, 0], [0, 0, 0, 0, 0],
- [1, 1, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 0, 0, 1, 1],
- [0, 1, 1, 0, 0], [0, 1, 0, 1, 0]]
- assert row_tensor[2].tolist() == [1, 2, 3, 1, 4, 3, 5, 3, 5, 4]
-
- edges = g.get_all_edges(0)
- assert edges.tolist() == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
- features = g.get_edge_feature(edges, [1, 2])
- assert features[0].tolist() == [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
- 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
-
- nodes_pair_list = [(101, 201), (103, 207), (204, 105), (108, 208), (110, 210), (202, 102), (201, 107), (208, 108)]
- edges = g.get_edges_from_nodes(nodes_pair_list)
- assert edges.tolist() == [1, 9, 31, 17, 20, 25, 34, 37]
-
- batch_num = 2
- edge_num = g.graph_info()['edge_num'][0]
- out_column_names = ["neighbors", "neg_neighbors", "neighbors_features", "neg_neighbors_features"]
- dataset = ds.GeneratorDataset(source=GNNGraphDataset(g, batch_num), column_names=out_column_names,
- sampler=RandomBatchedSampler(edge_num, batch_num), num_parallel_workers=4,
- python_multiprocessing=False)
- dataset = dataset.repeat(2)
- itr = dataset.create_dict_iterator(num_epochs=1, output_numpy=True)
- i = 0
- for data in itr:
- assert data['neighbors'].shape == (2, 7)
- assert data['neg_neighbors'].shape == (6, 7)
- assert data['neighbors_features'].shape == (2, 7)
- assert data['neg_neighbors_features'].shape == (6, 7)
- i += 1
- assert i == 40
-
-
- if __name__ == '__main__':
- test_graphdata_distributed()
|