|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- import numpy as np
- import pytest
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as c_transforms
- import mindspore.dataset.transforms.py_transforms as py_transforms
-
- import mindspore.dataset.vision.c_transforms as c_vision
- import mindspore.dataset.vision.py_transforms as py_vision
-
- from util import visualize_list, save_and_check_md5, config_get_set_seed, config_get_set_num_parallel_workers
-
- GENERATE_GOLDEN = False
-
-
- def test_compose():
- """
- Test C++ and Python Compose Op
- """
- ds.config.set_seed(0)
-
- def test_config(arr, op_list):
- try:
- data = ds.NumpySlicesDataset(arr, column_names="col", shuffle=False)
- data = data.map(input_columns=["col"], operations=op_list)
- res = []
- for i in data.create_dict_iterator(output_numpy=True):
- res.append(i["col"].tolist())
- return res
- except (TypeError, ValueError) as e:
- return str(e)
-
- # Test simple compose with only 1 op, this would generate a warning
- assert test_config([[1, 0], [3, 4]], c_transforms.Compose([c_transforms.Fill(2)])) == [[2, 2], [2, 2]]
-
- # Test 1 column -> 2 columns -> 1 -> 2 -> 1
- assert test_config([[1, 0]],
- c_transforms.Compose(
- [c_transforms.Duplicate(), c_transforms.Concatenate(), c_transforms.Duplicate(),
- c_transforms.Concatenate()])) \
- == [[1, 0] * 4]
-
- # Test one Python transform followed by a C++ transform. Type after OneHot is a float (mixed use-case)
- assert test_config([1, 0],
- c_transforms.Compose([py_transforms.OneHotOp(2), c_transforms.TypeCast(mstype.int32)])) \
- == [[[0, 1]], [[1, 0]]]
-
- # Test exceptions.
- with pytest.raises(TypeError) as error_info:
- c_transforms.Compose([1, c_transforms.TypeCast(mstype.int32)])
- assert "op_list[0] is neither a c_transform op (TensorOperation) nor a callable pyfunc." in str(error_info.value)
-
- # Test empty op list
- with pytest.raises(ValueError) as error_info:
- test_config([1, 0], c_transforms.Compose([]))
- assert "op_list can not be empty." in str(error_info.value)
-
- # Test Python compose op
- assert test_config([1, 0], py_transforms.Compose([py_transforms.OneHotOp(2)])) == [[[0, 1]], [[1, 0]]]
- assert test_config([1, 0], py_transforms.Compose([py_transforms.OneHotOp(2), (lambda x: x + x)])) == [[[0, 2]],
- [[2, 0]]]
-
- # Test nested Python compose op
- assert test_config([1, 0],
- py_transforms.Compose([py_transforms.Compose([py_transforms.OneHotOp(2)]), (lambda x: x + x)])) \
- == [[[0, 2]], [[2, 0]]]
-
- # Test passing a list of Python ops without Compose wrapper
- assert test_config([1, 0],
- [py_transforms.Compose([py_transforms.OneHotOp(2)]), (lambda x: x + x)]) \
- == [[[0, 2]], [[2, 0]]]
- assert test_config([1, 0], [py_transforms.OneHotOp(2), (lambda x: x + x)]) == [[[0, 2]], [[2, 0]]]
-
- # Test a non callable function
- with pytest.raises(ValueError) as error_info:
- py_transforms.Compose([1])
- assert "transforms[0] is not callable." in str(error_info.value)
-
- # Test empty Python op list
- with pytest.raises(ValueError) as error_info:
- test_config([1, 0], py_transforms.Compose([]))
- assert "transforms list is empty." in str(error_info.value)
-
- # Pass in extra brackets
- with pytest.raises(TypeError) as error_info:
- py_transforms.Compose([(lambda x: x + x)])()
- assert "Compose was called without an image. Fix invocation (avoid it being invoked as Compose([...])())." in str(
- error_info.value)
-
-
- def test_lambdas():
- """
- Test Multi Column Python Compose Op
- """
- ds.config.set_seed(0)
-
- def test_config(arr, input_columns, output_cols, op_list):
- data = ds.NumpySlicesDataset(arr, column_names=input_columns, shuffle=False)
- data = data.map(operations=op_list, input_columns=input_columns, output_columns=output_cols,
- column_order=output_cols)
- res = []
- for i in data.create_dict_iterator(output_numpy=True):
- for col_name in output_cols:
- res.append(i[col_name].tolist())
- return res
-
- arr = ([[1]], [[3]])
-
- assert test_config(arr, ["col0", "col1"], ["a"], py_transforms.Compose([(lambda x, y: x)])) == [[1]]
- assert test_config(arr, ["col0", "col1"], ["a"], py_transforms.Compose([lambda x, y: x, lambda x: x])) == [[1]]
- assert test_config(arr, ["col0", "col1"], ["a", "b"],
- py_transforms.Compose([lambda x, y: x, lambda x: (x, x * 2)])) == \
- [[1], [2]]
- assert test_config(arr, ["col0", "col1"], ["a", "b"],
- [lambda x, y: (x, x + y), lambda x, y: (x, y * 2)]) == [[1], [8]]
-
-
- def test_c_py_compose_transforms_module():
- """
- Test combining Python and C++ transforms
- """
- ds.config.set_seed(0)
-
- def test_config(arr, input_columns, output_cols, op_list):
- data = ds.NumpySlicesDataset(arr, column_names=input_columns, shuffle=False)
- data = data.map(operations=op_list, input_columns=input_columns, output_columns=output_cols,
- column_order=output_cols)
- res = []
- for i in data.create_dict_iterator(output_numpy=True):
- for col_name in output_cols:
- res.append(i[col_name].tolist())
- return res
-
- arr = [1, 0]
- assert test_config(arr, ["cols"], ["cols"],
- [py_transforms.OneHotOp(2), c_transforms.Mask(c_transforms.Relational.EQ, 1)]) == \
- [[[False, True]],
- [[True, False]]]
- assert test_config(arr, ["cols"], ["cols"],
- [py_transforms.OneHotOp(2), (lambda x: x + x), c_transforms.Fill(1)]) \
- == [[[1, 1]], [[1, 1]]]
- assert test_config(arr, ["cols"], ["cols"],
- [py_transforms.OneHotOp(2), (lambda x: x + x), c_transforms.Fill(1), (lambda x: x + x)]) \
- == [[[2, 2]], [[2, 2]]]
- assert test_config([[1, 3]], ["cols"], ["cols"],
- [c_transforms.PadEnd([3], -1), (lambda x: x + x)]) \
- == [[2, 6, -2]]
-
- arr = ([[1]], [[3]])
- assert test_config(arr, ["col0", "col1"], ["a"], [(lambda x, y: x + y), c_transforms.PadEnd([2], -1)]) == [[4, -1]]
-
-
- def test_c_py_compose_vision_module(plot=False, run_golden=True):
- """
- Test combining Python and C++ vision transforms
- """
- original_seed = config_get_set_seed(10)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- def test_config(plot, file_name, op_list):
- data_dir = "../data/dataset/testImageNetData/train/"
- data1 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
- data1 = data1.map(operations=op_list, input_columns=["image"])
- data2 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
- data2 = data2.map(operations=c_vision.Decode(), input_columns=["image"])
- original_images = []
- transformed_images = []
-
- for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
- transformed_images.append(item["image"])
- for item in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
- original_images.append(item["image"])
-
- if run_golden:
- # Compare with expected md5 from images
- save_and_check_md5(data1, file_name, generate_golden=GENERATE_GOLDEN)
-
- if plot:
- visualize_list(original_images, transformed_images)
-
- test_config(op_list=[c_vision.Decode(),
- py_vision.ToPIL(),
- py_vision.Resize((224, 224)),
- np.array],
- plot=plot, file_name="compose_c_py_1.npz")
-
- test_config(op_list=[c_vision.Decode(),
- c_vision.Resize((224, 244)),
- py_vision.ToPIL(),
- np.array,
- c_vision.Resize((24, 24))],
- plot=plot, file_name="compose_c_py_2.npz")
-
- test_config(op_list=[py_vision.Decode(),
- py_vision.Resize((224, 224)),
- np.array,
- c_vision.RandomColor()],
- plot=plot, file_name="compose_c_py_3.npz")
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers((original_num_parallel_workers))
-
-
- def test_py_transforms_with_c_vision():
- """
- These examples will fail, as c_transform should not be used in py_transforms.Random(Apply/Choice/Order)
- """
-
- ds.config.set_seed(0)
-
- def test_config(op_list):
- data_dir = "../data/dataset/testImageNetData/train/"
- data = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
- data = data.map(operations=op_list)
- res = []
- for i in data.create_dict_iterator(output_numpy=True):
- for col_name in output_cols:
- res.append(i[col_name].tolist())
- return res
-
- with pytest.raises(ValueError) as error_info:
- test_config(py_transforms.RandomApply([c_vision.RandomResizedCrop(200)]))
- assert "transforms[0] is not a py transforms." in str(error_info.value)
-
- with pytest.raises(ValueError) as error_info:
- test_config(py_transforms.RandomChoice([c_vision.RandomResizedCrop(200)]))
- assert "transforms[0] is not a py transforms." in str(error_info.value)
-
- with pytest.raises(ValueError) as error_info:
- test_config(py_transforms.RandomOrder([np.array, c_vision.RandomResizedCrop(200)]))
- assert "transforms[1] is not a py transforms." in str(error_info.value)
-
- with pytest.raises(RuntimeError) as error_info:
- test_config([py_transforms.OneHotOp(20, 0.1)])
- assert "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()" in str(
- error_info.value)
-
-
- def test_py_vision_with_c_transforms():
- """
- Test combining Python vision operations with C++ transforms operations
- """
-
- ds.config.set_seed(0)
-
- def test_config(op_list):
- data_dir = "../data/dataset/testImageNetData/train/"
- data1 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
- data1 = data1.map(operations=op_list, input_columns=["image"])
- transformed_images = []
-
- for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
- transformed_images.append(item["image"])
- return transformed_images
-
- # Test with Mask Op
- output_arr = test_config([py_vision.Decode(),
- py_vision.CenterCrop((2)), np.array,
- c_transforms.Mask(c_transforms.Relational.GE, 100)])
-
- exp_arr = [np.array([[[True, False, False],
- [True, False, False]],
- [[True, False, False],
- [True, False, False]]]),
- np.array([[[True, False, False],
- [True, False, False]],
- [[True, False, False],
- [True, False, False]]])]
-
- for exp_a, output in zip(exp_arr, output_arr):
- np.testing.assert_array_equal(exp_a, output)
-
- # Test with Fill Op
- output_arr = test_config([py_vision.Decode(),
- py_vision.CenterCrop((4)), np.array,
- c_transforms.Fill(10)])
-
- exp_arr = [np.ones((4, 4, 3)) * 10] * 2
- for exp_a, output in zip(exp_arr, output_arr):
- np.testing.assert_array_equal(exp_a, output)
-
- # Test with Concatenate Op, which will raise an error since ConcatenateOp only supports rank 1 tensors.
- with pytest.raises(RuntimeError) as error_info:
- test_config([py_vision.Decode(),
- py_vision.CenterCrop((2)), np.array,
- c_transforms.Concatenate(0)])
- assert "only 1D input supported" in str(error_info.value)
-
-
- def test_compose_with_custom_function():
- """
- Test Python Compose with custom function
- """
-
- def custom_function(x):
- return (x, x * x)
-
- # First dataset
- op_list = [
- lambda x: x * 3,
- custom_function,
- # convert two column output to one
- lambda *images: np.stack(images)
- ]
-
- data = ds.NumpySlicesDataset([[1, 2]], column_names=["col0"], shuffle=False)
- data = data.map(input_columns=["col0"], operations=op_list)
- #
-
- res = []
- for i in data.create_dict_iterator(output_numpy=True):
- res.append(i["col0"].tolist())
- assert res == [[[3, 6], [9, 36]]]
-
-
- if __name__ == "__main__":
- test_compose()
- test_lambdas()
- test_c_py_compose_transforms_module()
- test_c_py_compose_vision_module(plot=True)
- test_py_transforms_with_c_vision()
- test_py_vision_with_c_transforms()
- test_compose_with_custom_function()
|