|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- from builtins import range, super
- import time
-
- import pytest
-
- from mindspore import context
- from mindspore import log as logger
- from mindspore.dataset.callback import DSCallback, WaitedDSCallback
- from mindspore.train import Model
- from mindspore.train.callback import Callback
-
- import mindspore.dataset as ds
- import mindspore.nn as nn
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class BaseCallback(DSCallback):
- def __init__(self, step_size=1, events=None, cb_id=0):
- super().__init__(step_size)
- self.events = events
- self.cb_id = cb_id
-
- def append(self, event_name, ds_run_context):
- event = [event_name, ds_run_context.cur_epoch_num,
- ds_run_context.cur_step_num_in_epoch, ds_run_context.cur_step_num]
- event = '_'.join([str(e) for e in event])
- index = -1
- for i, e in enumerate(self.events):
- if e[0] == event:
- index = i
- break
- if index != -1:
- self.events[index][1].append(self.cb_id)
- else:
- self.events.append((event, [self.cb_id]))
-
-
- class Begin(BaseCallback):
- def ds_begin(self, ds_run_context):
- self.append("begin", ds_run_context)
-
-
- class EpochBegin(BaseCallback):
- def ds_epoch_begin(self, ds_run_context):
- self.append("epoch_begin", ds_run_context)
-
-
- class EpochEnd(BaseCallback):
- def ds_epoch_end(self, ds_run_context):
- self.append("epoch_end", ds_run_context)
-
-
- class StepBegin(BaseCallback):
- def ds_step_begin(self, ds_run_context):
- self.append("step_begin", ds_run_context)
-
-
- class StepEnd(BaseCallback):
- def ds_step_end(self, ds_run_context):
- self.append("step_end", ds_run_context)
-
-
- class MyDSCallback(Begin, EpochBegin, EpochEnd, StepBegin, StepEnd):
- pass
-
-
- def generate_expected(epoch_num, step_num, step_size=1, map_num=1, repeat=1):
- events = []
- cb_id = list(range(map_num))
-
- def append(name, e, s):
- event = [name, e + 1, s + 1, e * step_num * repeat + s + 1]
- event = '_'.join([str(ev) for ev in event])
- events.append((event, cb_id))
-
- events.append(("begin_0_0_0", cb_id))
- for e in range(epoch_num):
- append("epoch_begin", e, -1)
- for s in range(step_num * repeat):
- if s % step_size == 0:
- append("step_begin", e, s)
- append("step_end", e, s)
- append("epoch_end", e, step_num * repeat - 1)
- return events
-
-
- def build_test_case_1cb(epochs, steps, step_size=1, repeat=1):
- events = []
-
- arr = list(range(1, steps + 1))
- data = ds.NumpySlicesDataset(arr, shuffle=False)
-
- my_cb = MyDSCallback(step_size=step_size, events=events)
-
- data = data.map(operations=(lambda x: x), callbacks=my_cb)
- if repeat != 1:
- if repeat % 2 == 0 and repeat != 2:
- data = data.repeat(2)
- data = data.map(operations=(lambda x: x))
- data = data.repeat(repeat // 2)
- else:
- data = data.repeat(repeat)
- itr = data.create_tuple_iterator(num_epochs=epochs)
- for _ in range(epochs):
- for _ in itr:
- pass
-
- expected_events = generate_expected(epochs, steps, step_size, 1, repeat)
- assert expected_events == events
-
-
- def build_test_case_2cbs(epochs, steps):
- events1 = []
- events2 = []
- my_cb1 = MyDSCallback(events=events1)
- my_cb2 = MyDSCallback(events=events2)
-
- arr = list(range(1, steps + 1))
- data = ds.NumpySlicesDataset(arr, shuffle=False)
-
- data = data.map(operations=(lambda x: x), callbacks=[my_cb1, my_cb2])
-
- itr = data.create_tuple_iterator(num_epochs=epochs)
- for _ in range(epochs):
- for _ in itr:
- pass
-
- expected_events = generate_expected(epochs, steps)
- assert expected_events == events1
- assert expected_events == events2
-
-
- def build_test_case_2maps(epochs, steps):
- events = []
- my_cb1 = MyDSCallback(events=events, cb_id=0)
- my_cb2 = MyDSCallback(events=events, cb_id=1)
-
- arr = list(range(1, steps + 1))
- data = ds.NumpySlicesDataset(arr, shuffle=False)
-
- data = data.map(operations=(lambda x: x), callbacks=my_cb1)
- data = data.map(operations=(lambda x: x), callbacks=my_cb2)
-
- itr = data.create_tuple_iterator(num_epochs=epochs)
- for _ in range(epochs):
- for _ in itr:
- pass
-
- expected_events = generate_expected(epochs, steps, map_num=2)
-
- assert expected_events[1:] == events[1:]
-
- for event in events:
- assert len(event) == 2
- event, cb_ids = event
- if event != "begin_0_0_0":
- assert cb_ids[0] == 0
- assert cb_ids[1] == 1
-
-
- def test_callbacks_all_methods():
- logger.info("test_callbacks_all_methods")
-
- build_test_case_1cb(1, 1)
- build_test_case_1cb(1, 2)
- build_test_case_1cb(1, 3)
- build_test_case_1cb(1, 4)
-
- build_test_case_1cb(2, 1)
- build_test_case_1cb(2, 2)
- build_test_case_1cb(2, 3)
- build_test_case_1cb(2, 4)
-
- build_test_case_1cb(3, 1)
- build_test_case_1cb(3, 2)
- build_test_case_1cb(3, 3)
- build_test_case_1cb(3, 4)
-
-
- def test_callbacks_var_step_size():
- logger.info("test_callbacks_var_step_size")
-
- build_test_case_1cb(1, 2, 2)
- build_test_case_1cb(1, 3, 2)
- build_test_case_1cb(1, 4, 2)
-
- build_test_case_1cb(2, 2, 2)
- build_test_case_1cb(2, 3, 2)
- build_test_case_1cb(2, 4, 2)
-
- build_test_case_1cb(3, 2, 2)
- build_test_case_1cb(3, 3, 2)
- build_test_case_1cb(3, 4, 2)
-
-
- def test_callbacks_all_2cbs():
- logger.info("test_callbacks_all_2cbs")
-
- build_test_case_2cbs(4, 1)
- build_test_case_2cbs(4, 2)
- build_test_case_2cbs(4, 3)
- build_test_case_2cbs(4, 4)
-
-
- class MyWaitedCallback(WaitedDSCallback):
- def __init__(self, events, step_size=1):
- super().__init__(step_size)
- self.events = events
-
- def sync_epoch_begin(self, train_run_context, ds_run_context):
- event = f"ds_epoch_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}"
- self.events.append(event)
-
- def sync_step_begin(self, train_run_context, ds_run_context):
- event = f"ds_step_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}"
- self.events.append(event)
-
-
- class MyMSCallback(Callback):
- def __init__(self, events):
- self.events = events
-
- def epoch_end(self, run_context):
- cb_params = run_context.original_args()
- event = f"ms_epoch_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}"
- self.events.append(event)
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- event = f"ms_step_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}"
- self.events.append(event)
-
-
- class Net(nn.Cell):
- def construct(self, x, y):
- return x
-
-
- def test_callbacks_non_sink():
- logger.info("test_callbacks_non_sink")
-
- events = []
- my_cb1 = MyWaitedCallback(events, 1)
- my_cb2 = MyMSCallback(events)
- arr = [1, 2, 3, 4]
- data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=my_cb1)
-
- net = Net()
- model = Model(net)
-
- model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1])
- expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_2', 'ms_step_end_1_2', 'ds_step_begin_1_3',
- 'ms_step_end_1_3', 'ds_step_begin_1_4', 'ms_step_end_1_4',
- 'ms_epoch_end_1_4', 'ds_epoch_begin_2_4',
- 'ds_step_begin_2_5', 'ms_step_end_2_5', 'ds_step_begin_2_6',
- 'ms_step_end_2_6', 'ds_step_begin_2_7', 'ms_step_end_2_7', 'ds_step_begin_2_8',
- 'ms_step_end_2_8', 'ms_epoch_end_2_8']
-
- assert events[:18] == expected_synced_events
-
-
- def test_callbacks_non_sink_batch_size2():
- logger.info("test_callbacks_non_sink_batch_size2")
-
- events = []
- my_cb1 = MyWaitedCallback(events, 2)
- my_cb2 = MyMSCallback(events)
- arr = [1, 2, 3, 4]
- data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=my_cb1)
- data = data.batch(2)
- net = Net()
- model = Model(net)
-
- model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1])
-
- expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_3',
- 'ms_step_end_1_2',
- 'ms_epoch_end_1_2', 'ds_epoch_begin_2_4',
- 'ds_step_begin_2_5', 'ms_step_end_2_3', 'ds_step_begin_2_7',
- 'ms_step_end_2_4', 'ms_epoch_end_2_4']
-
- assert events[:10] == expected_synced_events
-
-
- def test_callbacks_non_sink_mismatch_size():
- logger.info("test_callbacks_non_sink_mismatch_size")
- default_timeout = ds.config.get_callback_timeout()
- ds.config.set_callback_timeout(1)
-
- events = []
- my_cb1 = MyWaitedCallback(events, 2)
- my_cb2 = MyMSCallback(events)
- arr = [1, 2, 3, 4]
- data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=my_cb1)
- data = data.batch(3)
- net = Net()
- model = Model(net)
- with pytest.raises(Exception) as err:
- model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1])
- assert "RuntimeError: ds_step_begin timed out after 1 second(s)" in str(err.value)
-
- ds.config.set_callback_timeout(default_timeout)
-
-
- def test_callbacks_validations():
- logger.info("test_callbacks_validations")
-
- with pytest.raises(Exception) as err:
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- data.map(operations=(lambda x: x), callbacks=0)
- assert "Argument callbacks with value 0 is not " in str(err.value)
-
- with pytest.raises(Exception) as err:
- my_cb1 = MyDSCallback()
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- data.map(operations=(lambda x: x), callbacks=[my_cb1, 0])
- assert "Argument callbacks[1] with value 0 is not " in str(err.value)
-
- with pytest.raises(Exception) as err:
- class BadCB(DSCallback):
- pass
-
- my_cb = BadCB()
-
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=my_cb)
- for _ in data:
- pass
- assert "Provided Callback class did not override any of the 6 callback methods." in str(err.value)
-
-
- def test_callbacks_sink_simulation():
- logger.info("test_callback_sink_simulation")
-
- events = []
- epochs = 2
- my_cb = MyWaitedCallback(events, 1)
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=my_cb)
- data = data.to_device()
- data.send(num_epochs=epochs)
- for e in range(epochs):
- for s in range(4):
- time.sleep(0.5)
- events.append(f"ms_step_end_{e + 1}_{e * 4 + s + 1}")
- my_cb.step_end(run_context=0)
- events.append(f"ms_epoch_end_{e + 1}_{(e + 1) * 4}")
- my_cb.epoch_end(run_context=0)
- expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_2', 'ms_step_end_1_2', 'ds_step_begin_1_3',
- 'ms_step_end_1_3', 'ds_step_begin_1_4', 'ms_step_end_1_4',
- 'ms_epoch_end_1_4', 'ds_epoch_begin_2_4',
- 'ds_step_begin_2_5', 'ms_step_end_2_5', 'ds_step_begin_2_6',
- 'ms_step_end_2_6', 'ds_step_begin_2_7', 'ms_step_end_2_7', 'ds_step_begin_2_8',
- 'ms_step_end_2_8', 'ms_epoch_end_2_8']
-
- assert events == expected_synced_events
-
-
- def test_callbacks_repeat():
- logger.info("test_callbacks_repeat")
-
- build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2)
- build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=3)
- build_test_case_1cb(epochs=2, steps=2, step_size=2, repeat=3)
- build_test_case_1cb(epochs=3, steps=2, step_size=4, repeat=3)
-
- build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2)
- build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=4)
- build_test_case_1cb(epochs=2, steps=2, step_size=2, repeat=8)
- build_test_case_1cb(epochs=3, steps=2, step_size=4, repeat=16)
-
-
- def test_callbacks_exceptions():
- logger.info("test_callbacks_exceptions")
-
- class BadCB(DSCallback):
- def ds_begin(self, ds_run_context):
- raise RuntimeError("Bad begin")
-
- with pytest.raises(Exception) as err:
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=BadCB())
- for _ in data:
- pass
- assert "RuntimeError: Bad begin" in str(err.value)
-
-
- def test_callbacks_train_end():
- logger.info("test_callback_sink_simulation")
- # No asserts are needed, just test there is no deadlock or exceptions
- events = []
- epochs = 2
-
- my_cb = MyWaitedCallback(events, 1)
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- data = data.map(operations=(lambda x: x), callbacks=[my_cb])
- data = data.to_device()
- data.send(num_epochs=epochs)
- time.sleep(0.5)
- my_cb.end(run_context={})
- time.sleep(0.5)
-
-
- def test_callbacks_one_cb():
- logger.info("test_callbacks_one_cb")
-
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- events1 = []
- events2 = []
- events3 = []
- my_begin = Begin(events=events1, cb_id=1)
- my_epoch_begin = EpochBegin(events=events2, cb_id=2)
- my_epoch_end = EpochEnd(events=events3, cb_id=3)
- my_step_begin = StepBegin(events=events3, cb_id=3)
- my_step_end = StepEnd(events=events2, cb_id=2)
-
- data = data.map(operations=(lambda x: x), callbacks=my_begin)
- data = data.map(operations=(lambda x: x), callbacks=[my_epoch_begin, my_step_end])
- data = data.map(operations=(lambda x: x), callbacks=[my_epoch_end, my_step_begin])
-
- itr = data.create_tuple_iterator(num_epochs=2)
- for _ in range(2):
- for _ in itr:
- pass
- expected_events1 = [('begin_0_0_0', [1])]
- expected_events2 = [('epoch_begin_1_0_0', [2]), ('step_end_1_1_1', [2]), ('step_end_1_2_2', [2]),
- ('step_end_1_3_3', [2]), ('step_end_1_4_4', [2]), ('epoch_begin_2_0_4', [2]),
- ('step_end_2_1_5', [2]), ('step_end_2_2_6', [2]), ('step_end_2_3_7', [2]),
- ('step_end_2_4_8', [2])]
- expected_events3 = [('step_begin_1_1_1', [3]), ('step_begin_1_2_2', [3]), ('step_begin_1_3_3', [3]),
- ('step_begin_1_4_4', [3]), ('epoch_end_1_4_4', [3]), ('step_begin_2_1_5', [3]),
- ('step_begin_2_2_6', [3]), ('step_begin_2_3_7', [3]), ('step_begin_2_4_8', [3]),
- ('epoch_end_2_4_8', [3])]
- assert events1 == expected_events1
- assert events2 == expected_events2
- assert events3 == expected_events3
-
-
- def test_clear_callback():
- logger.info("test_clear_callback")
-
- # this test case will test that callback is removed for get_dataset_size and output_shape/type
- class FlagCallback(DSCallback):
- def __init__(self):
- super().__init__(step_size=1)
- self.flag = False
- self.row_cnt = 0
-
- def ds_begin(self, ds_run_context):
- # if callback isn't removed in getter pass, this function will be called
- self.flag = True
-
- def ds_step_begin(self, ds_run_context):
- self.row_cnt += 1
-
- data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
- cb = FlagCallback()
- # make sure variables are properly initialized before testing
- assert not cb.flag and cb.row_cnt == 0
- data = data.map(operations=(lambda x: x), callbacks=cb)
- assert data.get_dataset_size() == 4
- assert data.output_shapes() == [[]]
- # make sure callback is never called by checking flag and row_cnt
- assert not cb.flag and cb.row_cnt == 0
- for _ in data.create_dict_iterator(num_epochs=1):
- pass
- # this ensure that callback is indeed called
- assert cb.flag and cb.row_cnt == 4
-
-
- if __name__ == '__main__':
- test_callbacks_all_2cbs()
- test_callbacks_all_methods()
- test_callbacks_exceptions()
- test_callbacks_repeat()
- test_callbacks_sink_simulation()
- test_callbacks_validations()
- test_callbacks_var_step_size()
- test_callbacks_non_sink_batch_size2()
- test_callbacks_non_sink()
- test_callbacks_one_cb()
- test_callbacks_non_sink_mismatch_size()
- test_callbacks_train_end()
- test_clear_callback()
|