|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """PROXIMAL_ADA_GRAD"""
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.common import Tensor
- import mindspore.common.dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from .optimizer import Optimizer
-
- _proximal_ada_grad_opt = C.MultitypeFuncGraph("proximal_ada_grad_opt")
-
-
- @_proximal_ada_grad_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
- def _tensor_run_opt(opt, learning_rate, l1, l2, gradient, weight, accum):
- """Apply proximal_ada_grad optimizer to the weight parameter."""
- success = True
- success = F.depend(success, opt(weight, accum, learning_rate, l1, l2, gradient))
- return success
-
-
- def _check_param_value(accum, l1, l2, use_locking, prim_name=None):
- """Check inputs param."""
- validator.check_value_type("accum", accum, [float], prim_name)
- validator.check_value_type("l1", l1, [float], prim_name)
- validator.check_value_type("l2", l2, [float], prim_name)
- validator.check_value_type("use_locking", use_locking, [bool], prim_name)
- validator.check_number_range("accum", accum, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
- validator.check_number_range("l1", l1, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
- validator.check_number_range("l2", l2, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
-
-
- class ProximalAdagrad(Optimizer):
- """
- Implement the ProximalAdagrad algorithm with ApplyProximalAdagrad Operator.
-
- ProximalAdagrad is an online Learning and Stochastic Optimization.
- Refer to paper `Efficient Learning using Forward-Backward Splitting
- <http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_.
-
- Args:
- params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
- should be Parameter.
- accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
- learning_rate (float): The learning rate value, must be greater than or equal to zero. Default: 0.001.
- l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
- l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
- use_locking (bool): If True use locks for update operation. Default: False.
- loss_scale (float): Value for the loss scale. It should be equal to or greater than 1.0. Default: 1.0.
- wegith_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
-
- Inputs:
- - **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
- in optimizer.
-
- Outputs:
- Tensor[bool], the value is True.
-
- Examples:
- >>> net = Net()
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> opt = nn.ProximalAdagrad(net.trainable_params())
- >>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None)
- """
-
- def __init__(self, params, accum=0.1, learning_rate=0.001, l1=0.0, l2=0.0,
- use_locking=False, loss_scale=1.0, weight_decay=0.0):
- super(ProximalAdagrad, self).__init__(learning_rate, params, weight_decay, loss_scale)
- if self.is_group:
- raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
- _check_param_value(accum, l1, l2, use_locking, self.cls_name)
- self.accum = self.parameters.clone(prefix="accum", init=accum)
- self.l1 = Tensor(l1, mstype.float32)
- self.l2 = Tensor(l2, mstype.float32)
- self.weight_decay = weight_decay
- self.hyper_map = C.HyperMap()
- self.opt = P.ApplyProximalAdagrad(use_locking=use_locking)
-
- def construct(self, grads):
- params = self.parameters
- accum = self.accum
- grads = self.decay_weight(grads)
- grads = self.scale_grad(grads)
- lr = self.learning_rate
- success = self.hyper_map(F.partial(_proximal_ada_grad_opt, self.opt, lr, self.l1, self.l2),
- grads, params, accum)
- return success
|