|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Test network turn on mix_precision."""
-
- import os
- import re
- import pytest
- import numpy as np
- from mindspore.common import dtype
- from mindspore import nn
- from mindspore import ops
- from mindspore import amp
- from mindspore import Tensor
- from mindspore import context
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
- from mindspore.train.model import Model
- from utils import FakeData
- from utils import allclose_nparray
- from utils import FakeDataInitMode
- from utils import find_newest_validateir_file
- from utils import clean_all_ir_files
-
-
- def read_validateir_file(path_folder):
- filename = find_newest_validateir_file(path_folder)
- with open(os.path.join(filename), 'r') as f:
- contend = f.read()
- return contend
-
-
- class Net(nn.Cell):
- def __init__(self, in_c, out_c):
- super().__init__()
- self.relu = nn.ReLU()
- self.bn1 = nn.BatchNorm2d(num_features=in_c,
- gamma_init='ones',
- beta_init='zeros',
- moving_mean_init='zeros',
- moving_var_init='ones')
- self.bn2 = nn.BatchNorm2d(num_features=out_c,
- gamma_init='ones',
- beta_init='zeros',
- moving_mean_init='zeros',
- moving_var_init='ones')
- self.conv = nn.Conv2d(in_channels=in_c,
- out_channels=out_c,
- kernel_size=3,
- stride=1,
- has_bias=True,
- pad_mode='same',
- weight_init='ones',
- bias_init='ones')
- self.mean = ops.ReduceMean(keep_dims=False)
-
- def construct(self, x):
- x = self.relu(x)
- x = self.bn1(x)
- x = self.conv(x)
- x = self.bn2(x)
- x = self.relu(x)
- x = self.mean(x, (2, 3))
- return x
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_sit_auto_mix_precision_train_o3():
- input_data = np.random.randn(32, 3, 224, 224).astype(np.float64)
- label_data = np.random.randn(32, 10).astype(np.float32)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE)
- net = Net(3, 10)
- opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.001, momentum=0.0009, weight_decay=0.001,
- loss_scale=0.0001)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
- train_network = amp.build_train_network(net, opt, loss, level="O3",
- loss_scale_manager=FixedLossScaleManager(drop_overflow_update=False))
- out = train_network(Tensor(input_data), Tensor(label_data))
-
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE)
- net_pynative = Net(3, 10)
- opt_pynative = nn.Momentum(params=net_pynative.trainable_params(), learning_rate=0.001, momentum=0.0009,
- weight_decay=0.001,
- loss_scale=0.0001)
- loss_pynative = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
- train_network_pynative = amp.build_train_network(net_pynative, opt_pynative, loss_pynative, level="O3",
- loss_scale_manager=FixedLossScaleManager(
- drop_overflow_update=False))
- out_pynative = train_network_pynative(Tensor(input_data), Tensor(label_data))
- assert np.allclose(out.asnumpy(), out_pynative.asnumpy(), 0.001, 0.001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_sit_auto_mix_precision_model_o0():
- input_data = np.random.randn(32, 3, 224, 224).astype(np.float32)
- dataset1 = FakeData(size=32,
- batch_size=32,
- image_size=(3, 224, 224),
- num_classes=10,
- fakedata_mode=FakeDataInitMode.OnesInit)
- dataset1.set_label_data_type(np.float16)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE)
- context.set_context(save_graphs=True, save_graphs_path='./test_amp_o0')
- net = Net(3, 10)
- net.to_float(dtype.float16)
- opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.001, momentum=0.0009)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
- model = Model(net, loss, opt, amp_level="O0")
- model.train(1, dataset1, dataset_sink_mode=False)
- contend = read_validateir_file('./test_amp_o0')
- castnum = re.findall("Cast", contend)
- assert len(castnum) == 5
- clean_all_ir_files('./test_amp_o0')
- model.predict(Tensor(input_data))
- contend = read_validateir_file('./test_amp_o0')
- castnum = re.findall("Cast", contend)
- assert len(castnum) == 11
- clean_all_ir_files('./test_amp_o0')
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_sit_auto_mix_precision_model_o2():
- input_data = np.random.randn(32, 3, 224, 224).astype(np.float32)
- dataset1 = FakeData(size=32,
- batch_size=32,
- image_size=(3, 224, 224),
- num_classes=10,
- fakedata_mode=FakeDataInitMode.OnesInit)
- dataset2 = FakeData(size=32,
- batch_size=32,
- image_size=(3, 224, 224),
- num_classes=10,
- fakedata_mode=FakeDataInitMode.OnesInit)
- # graph mode
- context.set_context(mode=context.GRAPH_MODE)
- context.set_context(save_graphs=True, save_graphs_path='./test_amp_o2')
- net = Net(3, 10)
- opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.001, momentum=0.0009)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
- model = Model(net, loss, opt, amp_level="O2")
- model.train(1, dataset1, dataset_sink_mode=False)
- contend = read_validateir_file('./test_amp_o2')
- castnum = re.findall("Cast", contend)
- assert len(castnum) == 14
- clean_all_ir_files('./test_amp_o2')
- out_graph = model.predict(Tensor(input_data))
-
- # pynative mode
- context.set_context(mode=context.PYNATIVE_MODE)
- net_pynative = Net(3, 10)
- opt_pynative = nn.Momentum(params=net_pynative.trainable_params(), learning_rate=0.001, momentum=0.0009)
- loss_pynative = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
- model_pynative = Model(net_pynative, loss_pynative, opt_pynative, amp_level="O2")
- model_pynative.train(1, dataset2, dataset_sink_mode=False)
- out_pynative = model_pynative.predict(Tensor(input_data))
- allclose_nparray(out_graph.asnumpy(), out_pynative.asnumpy(), 0.001, 0.001)
|