|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import os
- import numpy as np
- from mindspore.communication.management import get_rank
- from mindspore import Tensor
- from mindspore import Parameter
- from mindspore import context
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- from mindspore.train import Model
- from mindspore.context import ParallelMode
- from mindspore.communication.management import init
- from mindspore.communication.management import get_group_size
-
-
- class FakeDataInitMode:
- RandomInit = 0
- OnesInit = 1
- UniqueInit = 2
- ZerosInit = 3
-
- class FakeData:
- def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), num_class=10,
- random_offset=0, use_parallel=False, fakedata_mode=FakeDataInitMode.RandomInit):
-
- self.size = size
- self.rank_batch_size = batch_size
- self.total_batch_size = self.rank_batch_size
- self.random_offset = random_offset
- self.image_size = image_size
- self.num_class = num_class
- self.rank_size = 1
- self.rank_id = 0
- self.batch_index = 0
- self.image_data_type = np.float32
- self.label_data_type = np.float32
- self.is_onehot = True
- self.fakedata_mode = fakedata_mode
-
- if use_parallel:
- if 'CONTEXT_DEVICE_TARGET' in os.environ and os.environ['CONTEXT_DEVICE_TARGET'] == 'GPU':
- init(backend_name='nccl')
- else:
- init(backend_name='hccl')
- self.rank_size = get_group_size()
- self.rank_id = get_rank()
- self.total_batch_size = self.rank_batch_size * self.rank_size
- assert self.size % self.total_batch_size == 0
- self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
-
- def get_dataset_size(self):
- return int(self.size / self.total_batch_size)
-
- def get_reeat_count(self):
- return 1
-
- def set_image_data_type(self, data_type):
- self.image_data_type = data_type
-
- def set_label_data_type(self, data_type):
- self.label_data_type = data_type
-
- def set_label_onehot(self, is_onehot=True):
- self.is_onehot = is_onehot
-
- def create_tuple_iterator(self, num_epochs=-1, do_copy=False):
- return self
-
- def __getitem__(self, batch_index):
- if batch_index * self.total_batch_size >= len(self):
- raise IndexError("{} index out of range".format(self.__class__.__name__))
- rng_state = np.random.get_state()
- np.random.seed(batch_index + self.random_offset)
- if self.fakedata_mode == FakeDataInitMode.OnesInit:
- img = np.ones(self.total_batch_data_size)
- elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
- img = np.zeros(self.total_batch_data_size)
- elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
- total_size = 1
- for i in self.total_batch_data_size:
- total_size = total_size* i
- img = np.reshape(np.arange(total_size)*0.0001, self.total_batch_data_size)
- else:
- img = np.random.randn(*self.total_batch_data_size)
- target = np.random.randint(0, self.num_class, size=(self.rank_size, self.rank_batch_size))
- np.random.set_state(rng_state)
- img = img[self.rank_id]
- target = target[self.rank_id]
- img_ret = img.astype(self.image_data_type)
- target_ret = target.astype(self.label_data_type)
- if self.is_onehot:
- target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_class))
- target_onehot[np.arange(self.rank_batch_size), target] = 1
- target_ret = target_onehot.astype(self.label_data_type)
- return Tensor(img_ret), Tensor(target_ret)
-
- def __len__(self):
- return self.size
-
- def __iter__(self):
- self.batch_index = 0
- return self
-
- def reset(self):
- self.batch_index = 0
-
- def __next__(self):
- if self.batch_index * self.total_batch_size < len(self):
- data = self[self.batch_index]
- self.batch_index += 1
- return data
- raise StopIteration
-
-
- class NetWithSparseGatherV2(nn.Cell):
- def __init__(self, strategy=None, sparse=True):
- super(NetWithSparseGatherV2, self).__init__()
- self.axis = 0
- self.sparse = sparse
- if sparse:
- self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
- self.gather = P.SparseGatherV2()
- else:
- self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
- self.gather = P.Gather()
- if strategy is not None:
- self.gather.shard(strategy)
-
- def construct(self, indices):
- x = self.gather(self.weight, indices, self.axis)
- return x
-
- def train_mindspore_impl(self, indices, epoch, batch_size, use_parallel=True):
- ds = FakeData(size=8, batch_size=batch_size, num_class=8, image_size=(), use_parallel=use_parallel)
- ds.set_image_data_type(np.int32)
- net = self
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = nn.Adam(net.trainable_params())
- optimizer.target = "CPU"
- model = Model(net, loss, optimizer)
- for _ in range(epoch):
- model.train(1, ds, dataset_sink_mode=False)
- output = net(indices)
- return output
-
-
- def test_allreduce_sparsegatherv2_adam_auto_parallel():
- context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
- init(backend_name='hccl')
- context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8, gradients_mean=True)
- indices = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]).astype(np.int32))
- epoch = 3
- batch_size = 1
- context.set_context(enable_sparse=True)
- net = NetWithSparseGatherV2(sparse=True)
- output_sparse = net.train_mindspore_impl(indices, epoch, batch_size)
- net = NetWithSparseGatherV2(sparse=False)
- output = net.train_mindspore_impl(indices, epoch, batch_size)
- assert np.allclose(output.asnumpy(), output_sparse.asnumpy(), 0.001, 0.001)
|