|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Tests on mindspore.explainer.ImageClassificationRunner."""
-
- import os
- import shutil
- from random import random
- from unittest.mock import patch
-
- import numpy as np
- import pytest
- from PIL import Image
-
- from mindspore import context
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore.dataset import GeneratorDataset
- from mindspore.explainer import ImageClassificationRunner
- from mindspore.explainer._image_classification_runner import _normalize
- from mindspore.explainer.benchmark import Faithfulness
- from mindspore.explainer.explanation import Gradient
- from mindspore.train.summary import SummaryRecord
-
- CONST = random()
- NUMDATA = 2
-
- context.set_context(mode=context.PYNATIVE_MODE)
-
- def image_label_bbox_generator():
- for i in range(NUMDATA):
- image = np.arange(i, i + 16 * 3).reshape((3, 4, 4)) / 50
- label = np.array(i)
- bbox = np.array([1, 1, 2, 2])
- yield (image, label, bbox)
-
-
- class SimpleNet(nn.Cell):
- """
- Simple model for the unit test.
- """
-
- def __init__(self):
- super(SimpleNet, self).__init__()
- self.reshape = ms.ops.operations.Reshape()
-
- def construct(self, x):
- prob = ms.Tensor([0.1, 0.9], ms.float32)
- prob = self.reshape(prob, (1, 2))
- return prob
-
-
- class ActivationFn(nn.Cell):
- """
- Simple activation function for unit test.
- """
-
- def __init__(self):
- super(ActivationFn, self).__init__()
-
- def construct(self, x):
- return x
-
-
- def mock_gradient_call(_, inputs, targets):
- return inputs[:, 0:1, :, :]
-
-
- def mock_faithfulness_evaluate(_, explainer, inputs, targets, saliency):
- return CONST * targets
-
-
- def mock_make_rgba(array):
- return array.asnumpy()
-
-
- class TestRunner:
- """Test on Runner."""
-
- def setup_method(self):
- self.dataset = GeneratorDataset(image_label_bbox_generator, ["image", "label", "bbox"])
- self.labels = ["label_{}".format(i) for i in range(2)]
- self.network = SimpleNet()
- self.summary_dir = "summary_test_temp"
- self.explainer = [Gradient(self.network)]
- self.activation_fn = ActivationFn()
- self.benchmarkers = [Faithfulness(num_labels=len(self.labels),
- metric="NaiveFaithfulness",
- activation_fn=self.activation_fn)]
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_run_saliency_no_benchmark(self):
- """Test case when argument benchmarkers is not parsed."""
- res = []
- runner = ImageClassificationRunner(summary_dir=self.summary_dir, data=(self.dataset, self.labels),
- network=self.network, activation_fn=self.activation_fn)
-
- def mock_summary_add_value(_, plugin, name, value):
- res.append((plugin, name, value))
-
- with patch.object(SummaryRecord, "add_value", mock_summary_add_value), \
- patch.object(Gradient, "__call__", mock_gradient_call):
- runner.register_saliency(self.explainer)
- runner.run()
-
- # test on meta data
- idx = 0
- assert res[idx][0] == "explainer"
- assert res[idx][1] == "metadata"
- assert res[idx][2].metadata.label == self.labels
- assert res[idx][2].metadata.explain_method == ["Gradient"]
-
- # test on inference data
- for i in range(NUMDATA):
- idx += 1
- data_np = np.arange(i, i + 3 * 16).reshape((3, 4, 4)) / 50
- assert res[idx][0] == "explainer"
- assert res[idx][1] == "sample"
- assert res[idx][2].sample_id == i
- original_path = os.path.join(self.summary_dir, res[idx][2].image_path)
- with open(original_path, "rb") as f:
- image_data = np.asarray(Image.open(f)) / 255.0
- original_image = _normalize(np.transpose(data_np, [1, 2, 0]))
- assert np.allclose(image_data, original_image, rtol=3e-2, atol=3e-2)
-
- idx += 1
- assert res[idx][0] == "explainer"
- assert res[idx][1] == "inference"
- assert res[idx][2].sample_id == i
- assert res[idx][2].ground_truth_label == [i]
-
- diff = np.array(res[idx][2].inference.ground_truth_prob) - np.array([[0.1, 0.9][i]])
- assert np.max(np.abs(diff)) < 1e-6
- assert res[idx][2].inference.predicted_label == [1]
- diff = np.array(res[idx][2].inference.predicted_prob) - np.array([0.9])
- assert np.max(np.abs(diff)) < 1e-6
-
- # test on explanation data
- for i in range(NUMDATA):
- idx += 1
- data_np = np.arange(i, i + 3 * 16).reshape((3, 4, 4)) / 50
- saliency_np = data_np[0, :, :]
- assert res[idx][0] == "explainer"
- assert res[idx][1] == "explanation"
- assert res[idx][2].sample_id == i
- assert res[idx][2].explanation[0].explain_method == "Gradient"
-
- assert res[idx][2].explanation[0].label in [i, 1]
-
- heatmap_path = os.path.join(self.summary_dir, res[idx][2].explanation[0].heatmap_path)
- assert os.path.exists(heatmap_path)
-
- with open(heatmap_path, "rb") as f:
- heatmap_data = np.asarray(Image.open(f)) / 255.0
- heatmap_image = _normalize(saliency_np)
- assert np.allclose(heatmap_data, heatmap_image, atol=3e-2, rtol=3e-2)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_run_saliency_with_benchmark(self):
- """Test case when argument benchmarkers is parsed."""
- res = []
-
- def mock_summary_add_value(_, plugin, name, value):
- res.append((plugin, name, value))
-
- runner = ImageClassificationRunner(summary_dir=self.summary_dir, data=(self.dataset, self.labels),
- network=self.network, activation_fn=self.activation_fn)
-
- with patch.object(SummaryRecord, "add_value", mock_summary_add_value), \
- patch.object(Gradient, "__call__", mock_gradient_call), \
- patch.object(Faithfulness, "evaluate", mock_faithfulness_evaluate):
- runner.register_saliency(self.explainer, self.benchmarkers)
- runner.run()
-
- idx = 3 * NUMDATA + 1 # start index of benchmark data
- assert res[idx][0] == "explainer"
- assert res[idx][1] == "benchmark"
- assert abs(res[idx][2].benchmark[0].total_score - 2 / 3 * CONST) < 1e-6
- diff = np.array(res[idx][2].benchmark[0].label_score) - np.array([i * CONST for i in range(NUMDATA)])
- assert np.max(np.abs(diff)) < 1e-6
-
- def teardown_method(self):
- shutil.rmtree(self.summary_dir)
|