Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
|
4 years ago | |
|---|---|---|
| .. | ||
| app | 4 years ago | |
| gradle/wrapper | 5 years ago | |
| images | 4 years ago | |
| .gitignore | 5 years ago | |
| README.en.md | 4 years ago | |
| README.md | 4 years ago | |
| build.gradle | 5 years ago | |
| gradle.properties | 5 years ago | |
| gradlew | 5 years ago | |
| gradlew.bat | 5 years ago | |
| settings.gradle | 5 years ago | |
本示例程序演示了如何在端侧利用MindSpore Lite API以及MindSpore Lite骨骼检测模型完成端侧推理,对设备摄像头捕获的内容进行检测,并在App图像预览界面中显示连续目标检测结果。
在Android Studio中加载本示例源码。
启动Android Studio后,点击File->Settings->System Settings->Android SDK,勾选相应的SDK Tools。如下图所示,勾选后,点击OK,Android Studio即可自动安装SDK。
Android SDK Tools为默认安装项,取消
Hide Obsolete Packages选框之后可看到。使用过程中若出现问题,可参考第4项解决。
连接Android设备,运行该应用程序。
通过USB连接Android手机。待成功识别到设备后,点击Run 'app'即可在您的手机上运行本示例项目。
编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
Android Studio连接设备调试操作,可参考https://developer.android.com/studio/run/device?hl=zh-cn。
手机需开启“USB调试模式”,Android Studio 才能识别到手机。 华为手机一般在设置->系统和更新->开发人员选项->USB调试中开始“USB调试模型”。
在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
如下图所示,识别出的概率最高的物体是植物。
Demo部署问题解决方案。
4.1 NDK、CMake、JDK等工具问题:
如果Android Studio内安装的工具出现无法识别等问题,可重新从相应官网下载和安装,并配置路径。
4.2 NDK版本不匹配问题:
打开Android SDK,点击Show Package Details,根据报错信息选择安装合适的NDK版本。

4.3 Android Studio版本问题:
在工具栏-help-Checkout for Updates中更新Android Studio版本。
4.4 Gradle下依赖项安装过慢问题:
如图所示, 打开Demo根目录下build.gradle文件,加入华为镜像源地址:maven {url 'https://developer.huawei.com/repo/'},修改classpath为4.0.0,点击sync进行同步。下载完成后,将classpath版本复原,再次进行同步。

骨骼检测Android示例程序通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能,在Runtime中完成模型推理的过程。
├── app
│ ├── build.gradle # 其他Android配置文件
│ ├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
│ ├── proguard-rules.pro
│ └── src
│ ├── main
│ │ ├── AndroidManifest.xml # Android配置文件
│ │ ├── java # java层应用代码
│ │ │ └── com
│ │ │ └── mindspore
│ │ │ └── posenetdemo # 图像处理及推理流程实现
│ │ │ ├── CameraDataDealListener.java
│ │ │ ├── ImageUtils.java
│ │ │ ├── MainActivity.java
│ │ │ ├── PoseNetFragment.java
│ │ │ ├── Posenet.java #
│ │ │ └── TestActivity.java
│ │ └── res # 存放Android相关的资源文件
│ └── test
└── ...
从MindSpore Model Hub中下载模型文件,本示例程序中使用的目标检测模型文件为posenet_model.ms,同样通过download.gradle脚本在APP构建时自动下载,并放置在app/src/main/assets工程目录下。
若下载失败请手动下载模型文件,posenet_model.ms 下载链接。
在骨骼检测demo中,使用Java API实现端测推理。相比于C++ API,Java API可以直接在Java Class中调用,无需实现JNI层的相关代码,具有更好的便捷性。
本实例通过识别鼻子眼睛等身体特征、获取身体特征位置、计算结果的置信分数,来实现骨骼检测的目的。
public enum BodyPart {
NOSE,
LEFT_EYE,
RIGHT_EYE,
LEFT_EAR,
RIGHT_EAR,
LEFT_SHOULDER,
RIGHT_SHOULDER,
LEFT_ELBOW,
RIGHT_ELBOW,
LEFT_WRIST,
RIGHT_WRIST,
LEFT_HIP,
RIGHT_HIP,
LEFT_KNEE,
RIGHT_KNEE,
LEFT_ANKLE,
RIGHT_ANKLE
}
public class Position {
int x;
int y;
}
public class KeyPoint {
BodyPart bodyPart = BodyPart.NOSE;
Position position = new Position();
float score = 0.0f;
}
public class Person {
List<KeyPoint> keyPoints;
float score = 0.0f;
}
骨骼检测demo推理代码流程如下,完整代码请参见:src/main/java/com/mindspore/posenetdemo/Posenet.java。
加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。
加载模型:从文件系统中读取MindSpore Lite模型,并进行模型解析。
// Load the .ms model.
model = new Model();
if (!model.loadModel(mContext, "posenet_model.ms")) {
Log.e("MS_LITE", "Load Model failed");
return false;
}
创建配置上下文:创建配置上下文MSConfig,保存会话所需的一些基本配置参数,用于指导图编译和图执行。
// Create and init config.
msConfig = new MSConfig();
if (!msConfig.init(DeviceType.DT_CPU, NUM_THREADS, CpuBindMode.MID_CPU)) {
Log.e("MS_LITE", "Init context failed");
return false;
}
创建会话:创建LiteSession,并调用init方法将上一步得到MSConfig配置到会话中。
// Create the MindSpore lite session.
session = new LiteSession();
if (!session.init(msConfig)) {
Log.e("MS_LITE", "Create session failed");
msConfig.free();
return false;
}
msConfig.free();
加载模型文件并构建用于推理的计算图
// Compile graph.
if (!session.compileGraph(model)) {
Log.e("MS_LITE", "Compile graph failed");
model.freeBuffer();
return false;
}
// Note: when use model.freeBuffer(), the model can not be compile graph again.
model.freeBuffer();
输入数据: Java目前支持byte[]或者ByteBuffer两种类型的数据,设置输入Tensor的数据。
在输入数据之前,需要对存储图像信息的Bitmap进行解读分析与转换。
/**
* Scale the image to a byteBuffer of [-1,1] values.
*/
private ByteBuffer initInputArray(Bitmap bitmap) {
final int bytesPerChannel = 4;
final int inputChannels = 3;
final int batchSize = 1;
ByteBuffer inputBuffer = ByteBuffer.allocateDirect(
batchSize * bytesPerChannel * bitmap.getHeight() * bitmap.getWidth() * inputChannels
);
inputBuffer.order(ByteOrder.nativeOrder());
inputBuffer.rewind();
final float mean = 128.0f;
final float std = 128.0f;
int[] intValues = new int[bitmap.getWidth() * bitmap.getHeight()];
bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());
int pixel = 0;
for (int y = 0; y < bitmap.getHeight(); y++) {
for (int x = 0; x < bitmap.getWidth(); x++) {
int value = intValues[pixel++];
inputBuffer.putFloat(((float) (value >> 16 & 0xFF) - mean) / std);
inputBuffer.putFloat(((float) (value >> 8 & 0xFF) - mean) / std);
inputBuffer.putFloat(((float) (value & 0xFF) - mean) / std);
}
}
return inputBuffer;
}
通过ByteBuffer输入数据。
long estimationStartTimeNanos = SystemClock.elapsedRealtimeNanos();
ByteBuffer inputArray = this.initInputArray(bitmap);
List<MSTensor> inputs = session.getInputs();
if (inputs.size() != 1) {
return null;
}
Log.i("posenet", String.format("Scaling to [-1,1] took %.2f ms",
1.0f * (SystemClock.elapsedRealtimeNanos() - estimationStartTimeNanos) / 1_000_000));
MSTensor inTensor = inputs.get(0);
inTensor.setData(inputArray);
long inferenceStartTimeNanos = SystemClock.elapsedRealtimeNanos();
对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。
使用runGraph进行模型推理。
// Run graph to infer results.
if (!session.runGraph()) {
Log.e("MS_LITE", "Run graph failed");
return null;
}
lastInferenceTimeNanos = SystemClock.elapsedRealtimeNanos() - inferenceStartTimeNanos;
Log.i(
"posenet",
String.format("Interpreter took %.2f ms", 1.0f * lastInferenceTimeNanos / 1_000_000)
);
通过输出Tensor得到推理结果。
// Get output tensor values.
List<MSTensor> heatmaps_list = session.getOutputsByNodeName("Conv2D-27");
if (heatmaps_list == null) {
return null;
}
MSTensor heatmaps_tensors = heatmaps_list.get(0);
float[] heatmaps_results = heatmaps_tensors.getFloatData();
int[] heatmapsShape = heatmaps_tensors.getShape(); //1, 9, 9 ,17
float[][][][] heatmaps = new float[heatmapsShape[0]][][][];
for (int x = 0; x < heatmapsShape[0]; x++) { // heatmapsShape[0] =1
float[][][] arrayThree = new float[heatmapsShape[1]][][];
for (int y = 0; y < heatmapsShape[1]; y++) { // heatmapsShape[1] = 9
float[][] arrayTwo = new float[heatmapsShape[2]][];
for (int z = 0; z < heatmapsShape[2]; z++) { //heatmapsShape[2] = 9
float[] arrayOne = new float[heatmapsShape[3]]; //heatmapsShape[3] = 17
for (int i = 0; i < heatmapsShape[3]; i++) {
int n = i + z * heatmapsShape[3] + y * heatmapsShape[2] * heatmapsShape[3] + x * heatmapsShape[1] * heatmapsShape[2] * heatmapsShape[3];
arrayOne[i] = heatmaps_results[n]; //1*9*9*17 ??
}
arrayTwo[z] = arrayOne;
}
arrayThree[y] = arrayTwo;
}
heatmaps[x] = arrayThree;
}
List<MSTensor> offsets_list = session.getOutputsByNodeName("Conv2D-28");
if (offsets_list == null) {
return null;
}
MSTensor offsets_tensors = offsets_list.get(0);
float[] offsets_results = offsets_tensors.getFloatData();
int[] offsetsShapes = offsets_tensors.getShape();
float[][][][] offsets = new float[offsetsShapes[0]][][][];
for (int x = 0; x < offsetsShapes[0]; x++) {
float[][][] offsets_arrayThree = new float[offsetsShapes[1]][][];
for (int y = 0; y < offsetsShapes[1]; y++) {
float[][] offsets_arrayTwo = new float[offsetsShapes[2]][];
for (int z = 0; z < offsetsShapes[2]; z++) {
float[] offsets_arrayOne = new float[offsetsShapes[3]];
for (int i = 0; i < offsetsShapes[3]; i++) {
int n = i + z * offsetsShapes[3] + y * offsetsShapes[2] * offsetsShapes[3] + x * offsetsShapes[1] * offsetsShapes[2] * offsetsShapes[3];
offsets_arrayOne[i] = offsets_results[n];
}
offsets_arrayTwo[z] = offsets_arrayOne;
}
offsets_arrayThree[y] = offsets_arrayTwo;
}
offsets[x] = offsets_arrayThree;
}
对输出节点的数据进行处理,得到骨骼检测demo的返回值person,实现功能。
Conv2D-27中,heatmaps存储height、weight、numKeypoints三种参数,可用于求出keypointPosition位置信息。
Conv2D-28中,offset代表位置坐标的偏移量,与keypointPosition结合可获取confidenceScores置信分数,用于判断模型推理结果。
通过keypointPosition与confidenceScores,获取person.keyPoints和person.score,得到模型的返回值person。
int height = ((Object[]) heatmaps[0]).length; //9
int width = ((Object[]) heatmaps[0][0]).length; //9
int numKeypoints = heatmaps[0][0][0].length; //17
// Finds the (row, col) locations of where the keypoints are most likely to be.
Pair[] keypointPositions = new Pair[numKeypoints];
for (int i = 0; i < numKeypoints; i++) {
keypointPositions[i] = new Pair(0, 0);
}
for (int keypoint = 0; keypoint < numKeypoints; keypoint++) {
float maxVal = heatmaps[0][0][0][keypoint];
int maxRow = 0;
int maxCol = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
if (heatmaps[0][row][col][keypoint] > maxVal) {
maxVal = heatmaps[0][row][col][keypoint];
maxRow = row;
maxCol = col;
}
}
}
keypointPositions[keypoint] = new Pair(maxRow, maxCol);
}
// Calculating the x and y coordinates of the keypoints with offset adjustment.
int[] xCoords = new int[numKeypoints];
int[] yCoords = new int[numKeypoints];
float[] confidenceScores = new float[numKeypoints];
for (int i = 0; i < keypointPositions.length; i++) {
Pair position = keypointPositions[i];
int positionY = (int) position.first;
int positionX = (int) position.second;
yCoords[i] = (int) ((float) positionY / (float) (height - 1) * bitmap.getHeight() + offsets[0][positionY][positionX][i]);
xCoords[i] = (int) ((float) positionX / (float) (width - 1) * bitmap.getWidth() + offsets[0][positionY][positionX][i + numKeypoints]);
confidenceScores[i] = sigmoid(heatmaps[0][positionY][positionX][i]);
}
Person person = new Person();
KeyPoint[] keypointList = new KeyPoint[numKeypoints];
for (int i = 0; i < numKeypoints; i++) {
keypointList[i] = new KeyPoint();
}
float totalScore = 0.0f;
for (int i = 0; i < keypointList.length; i++) {
keypointList[i].position.x = xCoords[i];
keypointList[i].position.y = yCoords[i];
keypointList[i].score = confidenceScores[i];
totalScore += confidenceScores[i];
}
person.keyPoints = Arrays.asList(keypointList);
person.score = totalScore / numKeypoints;
return person;
MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
C++ Python Text Unity3D Asset C other