|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.nn import Cell
- import mindspore.ops.operations as P
-
-
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.mul = P.Mul()
- self.div = P.RealDiv()
- self.sqrt = P.Sqrt()
- self.pow = P.Pow()
- self.neg = P.Neg()
- self.reducemin = P.ReduceMin()
- self.reshape = P.Reshape()
-
- def construct(self, x, y):
- add_res1 = self.add(x, 4)
- add_res2 = self.add(add_res1, 5)
- sub_res = self.sub(y, 3)
- mul_res = self.mul(self.sqrt(add_res2), self.sqrt(sub_res))
- div_res = self.div(mul_res, self.sqrt(mul_res))
- pow_res = self.pow(y, 2)
- neg_res = self.neg(self.neg(pow_res))
- add_res3 = self.add(neg_res, div_res)
- resh_res = self.reshape(add_res3, (2, 12, 3))
- return self.reducemin(resh_res, 1)
-
-
- def test_basic():
- input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
- input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
- input_y = np.abs(input_y) + 3
- add_res = input_x + 9
- sub_res = input_y + (-3)
- mul_res = np.sqrt(add_res * sub_res)
- div_res = np.sqrt(mul_res)
- pow_res = input_y * input_y
- neg_res = pow_res
- add_res3 = neg_res + div_res
- expect = np.min(add_res3, (1, 2))
-
- net = Net()
- result = net(Tensor(input_x), Tensor(input_y))
-
- res = np.allclose(expect, result.asnumpy(), rtol=1.e-4,
- atol=1.e-7, equal_nan=True)
- assert res
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_basic_gpu():
- context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
- test_basic()
-
-
- def test_basic_ascend():
- context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
- test_basic()
|